356
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Assessing Directed Evolution Methods for the Generation of Biosynthetic Enzymes with Potential in Drug Biosynthesis

, , &
Pages 809-819 | Published online: 06 Jun 2011

Bibliography

  • Pollack A . Taking big risk for big payoff, industry seeks cancer drugs. The New York Times, 1 September (2009).
  • Tao JH , XuJH. Biocatalysis in development of green pharmaceutical processes.Curr. Opin. Chem. Biol.13(1), 43–50 (2009).
  • Pinheiro E , VasanA, KimJY, LeeE, GuimierJM, PerriensJ. Examining the production costs of antiretroviral drugs.Aids20(13), 1745–1752 (2006).
  • Rothlisberger D , KhersonskyO, WollacottAMet al. Kemp elimination catalysts by computational enzyme design. Nature 453(7192), U190–U194 (2008).
  • Dougherty MJ , ArnoldFH. Directed evolution: new parts and optimized function.Curr. Opin. Biotechnol.20(4), 486–491 (2009).
  • Schmidt DMZ , MundorffEC, DojkaMet al. Evolutionary potential of (β/α)(8)-barrels: functional promiscuity produced by single substitutions in the enolase superfamily. Biochemistry 42(28), 8387–8393 (2003).
  • Jackel C , KastP, HilvertD. Protein design by directed evolution.Annu. Rev. Biophys.37, 153–173 (2008).
  • Johannes TW , ZhaoHM. Directed evolution of enzymes and biosynthetic pathways.Curr. Opin. Microbiol.9(3), 261–267 (2006).
  • Glieder A , FarinasET, ArnoldFH. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase.Nat. Biotechnol.20(11), 1135–1139 (2002).
  • Peters MW , MeinholdP, GliederA, ArnoldFH. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3.J. Am. Chem. Soc.125(44), 13442–13450 (2003).
  • Fasan R , ChenMM, CrookNC, ArnoldFH. Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties.Angew. Chem. Int. Ed.46, 8414–8418 (2007).
  • Meinhold P , PetersMW, ChenMMY, TakahashiK, ArnoldFH. Direct conversion of ethane to ethanol by engineered cytochrome P450BM3.ChemBioChem6(10), 1765–1768 (2005).
  • Johannes TW , WoodyerRD, ZhaoH. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration.Appl. Environ. Microbiol.71(10), 5728–5734 (2005).
  • McLachlan MJ , JohannesTW, ZhaoH. Further improvement of phosphite dehydrogenase thermostability by saturation mutagenesis.Biotechnol. Bioeng.99(2), 268–274 (2008).
  • Reetz MT , BocolaM, CarballeiraJD, ZhaDX, VogelA. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test.Angew. Chem. Int. Ed.44(27), 4192–4196 (2005).
  • Reetz MT , PrasadS, CarballeiraJD, GumulyaY, BocolaM. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.J. Am. Chem. Soc.132(26), 9144–9152 (2010).
  • Pfleger BF , PiteraDJ, SmolkeCD, KeaslingJD. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes.Nature Biotechnology24(8), 1027–1032 (2006).
  • Ro DK , ParadiseEM, OuelletMet al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086), 940–943 (2006).
  • Yoshikuni Y , FerrinTE, KeaslingJD. Designed divergent evolution of enzyme function.Nature440(7087), 1078–1082 (2006).
  • Savile CK , JaneyJM, MundorffECet al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329(5989), 305–309 (2010).
  • Doms A , SchroederM. Gopubmed: exploring pubmed with the gene ontology.Nucleic Acids Res.33, W783–W786 (2005).
  • Wong TS , ZhurinaD, SchwanebergU. The diversity challenge in directed protein evolution.Comb. Chem. High Throughput Screening9(4), 271–288 (2006).
  • Wong TS , RoccatanoD, ZachariasM, SchwanebergU. A statistical analysis of random mutagenesis methods used for directed protein evolution.J. Mol. Biol.355(4), 858–871 (2006).
  • Lai YP , HuangJ, WangLF, LiJ, WuZR. A new approach to random mutagenesis in vitro. Biotechnol. Bioeng.86(6), 622–627 (2004).
  • Myers RM , LermanLS, ManiatisT. A general-method for saturation mutagenesis of cloned DNA fragments.Science229(4710), 242–247 (1985).
  • Zaccolo M , WilliamsDM, BrownDM, GherardiE. An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues.J. Mol. Biol.255(4), 589–603 (1996).
  • Balashov S , HumayunMZ. Specificity of spontaneous mutations induced in mutA mutator cells.Mutat. Res. Fundam. Mol. Mech. Mutagen.548(1–2), 9–18 (2004).
  • Patrick WM , MatsumuraI. A study in molecular contingency: glutamine phosphoribosylpyrophosphate amidotransferase is a promiscuous and evolvable phosphoribosylanthranilate isomerase.J. Mol. Biol.377(2), 323–336 (2008).
  • Roodveldt C , TawfikDS. Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily.Biochemistry44(38), 12728–12736 (2005).
  • Rowe LA , GeddieML, AlexanderOB, MatsumuraI. A comparison of directed evolution approaches using the β-glucuronidase model system.J. Mol. Biol.332(4), 851–860 (2003).
  • DeSantis G , WongK, FarwellBet al. Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J. Am. Chem. Soc. 125(38), 11476–11477 (2003).
  • Reidhaar-Olson JF , SauerRT. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences.Science241(4861), 53–57 (1988).
  • Reetz MT . Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions.Angew. Chem., Int. Ed.50(1), 138–174 (2011).
  • Crameri A , RaillardSA, BermudezE, StemmerWP. DNA shuffling of a family of genes from diverse species accelerates directed evolution.Nature391(6664), 288–291 (1998).
  • Stemmer WPC . DNA shuffling by random fragmentation and reassembly – in vitro recombination for molecular evolution. Proc. Natl Acad. Sci. USA91(22), 10747–10751 (1994).
  • Zhao HM , GiverL, ShaoZX, AffholterJA, ArnoldFH. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol.16(3), 258–261 (1998).
  • Sieber V , MartinezCA, ArnoldFH. Libraries of hybrid proteins from distantly related sequences.Nat. Biotechnol.19(5), 456–460 (2001).
  • Ostermeier M , ShimJH, BenkovicSJ. A combinatorial approach to hybrid enzymes independent of DNA homology.Nat. Biotechnol.17(12), 1205–1209 (1999).
  • Lutz S , OstermeierM, MooreGL, MaranasCD, BenkovicSJ. Creating multiple-crossover DNA libraries independent of sequence identity.Proc. Natl Acad. Sci. USA98(20), 11248–11253 (2001).
  • Fox RJ , DavisSC, MundorffECet al. Improving catalytic function by prosar-driven enzyme evolution. Nat. Biotechnol. 25(3), 338–344 (2007).
  • Taylor SV , KastP, HilvertD. Investigating and engineering enzymes by genetic selection.Ang. Chem. Int. Ed.40(18), 3310–3335 (2001).
  • Dietrich JA , McKeeAE, KeaslingJD. High-throughput metabolic engineering: advances in small-molecule screening and selection.Annu. Rev. Biochem.79, 563–590 (2010).
  • Boersma YL , DrogeMJ, QuaxWJ. Selection strategies for improved biocatalysts.FEBS J.274(9), 2181–2195 (2007).
  • Arnold FH , GeorgiouG. Directed Enzyme Evolution: Screening and Selection Methods. Humana Press, Totowa, NJ, USA (2003).
  • Olsen M , IversonB, GeorgiouG. High-throughput screening of enzyme libraries.Curr. Opin. Biotechnol.11(4), 331–337 (2000).
  • Wahler D , ReymondJL. Novel methods for biocatalyst screening.Curr. Opin. Chem. Biol.5(2), 152–158 (2001).
  • Akanuma S , YamagishiA, TanakaN, OshimaT. Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution. Protein Sci.7(3), 698–705 (1998).
  • Rothman SC , KirschJF. How does an enzyme evolved in vitro compare to naturally occurring homologs possessing the targeted function? Tyrosine aminotransferase from aspartate aminotransferase. J. Mol. Biol.327(3), 593–608 (2003).
  • Yano T , OueS, KagamiyamaH. Directed evolution of an aspartate aminotransferase with new substrate specificities.Proc. Natl Acad. Sci. USA95(10), 5511–5515 (1998).
  • Castle LA , SiehlDL, GortonRet al. Discovery and directed evolution of a glyphosate tolerance gene. Science 304(5674), 1151–1154 (2004).
  • Cho CMH , MulchandaniA, ChenW. Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos.Appl. Environ. Microbiol.70(8), 4681–4685 (2004).
  • Claren J , MalisiC, HockerB, SternerR. Establishing wild-type levels of catalytic activity on natural and artificial βα)(8)-barrel protein scaffolds.Proc. Natl Acad. Sci. USA106(10), 3704–3709 (2009).
  • Gulick AM , FahlWE. Forced evolution of glutathione-s-transferase to create a more efficient drug detoxication enzyme.Proc. Natl Acad. Sci. USA92(18), 8140–8144 (1995).
  • Hoseki J , YanoT, KoyamaY, KuramitsuS, KagamiyamaH. Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for thermus thermophilus.J. Biochem.126(5), 951–956 (1999).
  • Landis DM , LoebLA. Random sequence mutagenesis and resistance to 5-fluorouridine in human thymidylate synthases.J. Biol. Chem.273(40), 25809–25817 (1998).
  • Walter KU , VamvacaK, HilvertD. An active enzyme constructed from a 9-amino acid alphabet.J. Biol. Chem.280(45), 37742–37746 (2005).
  • Zhang KC , LiH, ChoKM, LiaoJC. Expanding metabolism for total biosynthesis of the nonnatural amino acid L-homoalanine. Proc. Natl Acad. Sci. USA107(14), 6234–239 (2010).
  • Black ME , NewcombTG, WilsonHM, LoebLA. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy.Proc. Natl Acad. Sci. USA93(8), 3525–3529 (1996).
  • Christians FC , ScapozzaL, CrameriA, FolkersG, StemmerWP. Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling.Nat. Biotechnol.17(3), 259–264 (1999).
  • Chin JW , MartinAB, KingDS, WangL, SchultzPG. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl Acad. Sci. USA99(17), 11020–11024 (2002).
  • Wang L , BrockA, HerberichB, SchultzPG. Expanding the genetic code of Escherichia coli. Science292(5516), 498–500 (2001).
  • Schwimmer LJ , RohatgiP, AziziB, SeleyKL, DoyleDF. Creation and discovery of ligand-receptor pairs for transcriptional control with small molecules.Proc. Natl Acad. Sci. USA101(41), 14707–14712 (2004).
  • Guntas G , MansellTJ, KimJR, OstermeierM. Directed evolution of protein switches and their application to the creation of ligand-binding proteins.Proc. Natl Acad. Sci. USA102(32), 11224–11229 (2005).
  • Hida K , HanesJ, OstermeierM. Directed evolution for drug and nucleic acid delivery.Adv. Drug Delivery Rev.59(15), 1562–1578 (2007).
  • Fernandez-Gacio A , UguenM, FastrezJ. Phage display as a tool for the directed evolution of enzymes.Trends Biotechnol.21(9), 408–414 (2003).
  • Jose J . Autodisplay: efficient bacterial surface display of recombinant proteins.Appl. Microbiol. Biotechnol.69(6), 607–614 (2006).
  • Bosma T , DamborskyJ, StuckiG, JanssenDB. Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene.Appl. Environ. Microbiol.68(7), 3582–3587 (2002).
  • Carter BT , LinH, GoldbergSD, AlthoffEA, RaushelJ, CornishVW. Investigation of the mechanism of resistance to third-generation cephalosporins by class c β-lactamases by using chemical complementation.ChemBioChem6(11), 2055–2067 (2005).
  • Cheon YH , ParkHS, KimJH, KimY, KimHS. Manipulation of the active site loops of d-hydantoinase, a (β/α)(8)-barrel protein, for modulation of the substrate specificity.Biochemistry43(23), 7413–7420 (2004).
  • Delagrave S , MurphyDJ, PrussJLRet al. Application of a very high-throughput digital imaging screen to evolve the enzyme galactose oxidase. Protein Eng. 14(4), 261–267 (2001).
  • Iffland A , GendreizigS, TafelmeyerP, JohnssonK. Changing the substrate specificity of cytochrome c peroxidase using directed evolution.Biochem. Biophys. Res. Commun.286(1), 126–132 (2001).
  • Lin L , MengX, LiuPFet al. Improved catalytic efficiency of endo-β-1,4-glucanase from Bacillus subtilis BME-15 by directed evolution. Appl. Microbiol. Biotechnol. 82(4), 671–679 (2009).
  • Nakagawa Y , HasegawaA, HiratakeJ, SakataK. Engineering of pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.Protein Eng. Des. Sel.20(7), 339–346 (2007).
  • Nakazawa H , OkadaK, OnoderaT, OgasawaraW, OkadaH, MorikawaY. Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Appl. Microbiol. Biotechnol.83(4), 649–657 (2009).
  • Park SH , ParkHY, SohngJKet al. Expanding substrate specificity of GT-B fold glycosyltransferase via domain swapping and high-throughput screening. Biotechnol. Bioeng. 102(4), 988–994 (2009).
  • Zhang ZG , LiuY, GuengerichFP, MatseJH, ChenJ, WuZL. Identification of amino acid residues involved in 4-chloroindole 3-hydroxylation by cytochrome P450 2A6 using screening of random libraries.J. Biotechnol.139(1), 12–18 (2009).
  • Antipov E , ChoAE, WittrupKD, KlibanovAM. Highly l and d enantioselective variants of horseradish peroxidase discovered by an ultrahigh-throughput selection method.Proc. Natl Acad. Sci. USA105(46), 17694–17699 (2008).
  • Aharoni A , AmitaiG, BernathK, MagdassiS, TawfikDS. High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments.Chem. Biol.12(12), 1281–1289 (2005).
  • Griswold KE , AiyappanNS, IversonBL, GeorgiouG. The evolution of catalytic efficiency and substrate promiscuity in human theta class 1–1 glutathione transferase.J. Mol. Biol.364(3), 400–410 (2006).
  • Griswold KE , KawarasakiY, GhoneimN, BenkovicSJ, IversonBL, GeorgiouG. Evolution of highly active enzymes by homology-independent recombination.Proc. Natl Acad. Sci. USA102(29), 10082–10087 (2005).
  • Liu LF , LiYF, LiottaD, LutzS. Directed evolution of an orthogonal nucleoside analog kinase via fluorescence-activated cell sorting.Nucleic Acids Res.37(13), 4472–4481 (2009).
  • Mastrobattista E , TalyV, ChanudetE, TreacyP, KellyBT, GriffithsAD. High-throughput screening of enzyme libraries: in vitro evolution of a β-galactosidase by fluorescence-activated sorting of double emulsions. Chem. Biol.12(12), 1291–1300 (2005).
  • Droge MJ , BoersmaYL, van Pouderoyen G et al. Directed evolution of Bacillus subtilis lipase a by use of enantiomeric phosphonate inhibitors: crystal structures and phage display selection. ChemBioChem7(1), 149–157 (2006).
  • Sunbul M , MarshallNJ, ZouYK, ZhangKY, YinJ. Catalytic turnover-based phage selection for engineering the substrate specificity of Sfp phosphopantetheinyl transferase.J. Mol. Biol.387(4), 883–898 (2009).
  • Matsumura I , WallingfordJB, SuranaNK, VizePD, EllingtonAD. Directed evolution of the surface chemistry of the reporter enzyme β-glucuronidase.Nat. Biotechnol.17(7), 696–701 (1999).
  • Schmidt-Dannert C . Engineering novel carotenoids in microorganisms.Curr. Opin. Biotechnol.11(3), 255–261 (2000).
  • Schmidt-Dannert C , UmenoD, ArnoldFH. Molecular breeding of carotenoid biosynthetic pathways.Nat. Biotechnol.18(7), 750–753 (2000).
  • Hibbert EG , SenussiT, CostelloeSJet al. Directed evolution of transketolase activity on non-phosphorylated substrates. J. Biotechnol. 131(4), 425–432 (2007).
  • Ohki T , ShibataN, HiguchiYet al. Two alternative modes for optimizing nylon-6 byproduct hydrolytic activity from a carboxylesterase with a β-lactamase fold: x-ray crystallographic analysis of directly evolved 6-aminohexanoate-dimer hydrolase. Protein Sci. 18(8), 1662–1673 (2009).
  • Wei CL , YangYB, DengCHet al. Directed evolution of Streptomyces clavuligerus deacetoxycephalosporin C synthase for enhancement of penicillin G expansion. Appl. Environ. Microbiol. 71(12), 8873–8880 (2005).
  • Bhuiya M -W, Liu C-J. Engineering monolignol 4-O-methyltransferases to modulate lignin biosynthesis. J. Biol. Chem.285(1), 277–285 (2010).
  • Hsu CC , HongZY, WadaM, FrankeD, WongCH. Directed evolution of d-sialic acid aldolase to l-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase. Proc. Natl Acad. Sci. USA102(26), 9122–9126 (2005).
  • Williams GJ , DomannS, NelsonA, BerryA. Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution.Proc. Natl Acad. Sci. USA100(6), 3143–3148 (2003).
  • Woodhall T , WilliamsG, BerryA, NelsonA. Creation of a tailored aldolase for the parallel synthesis of sialic acid mimetics.Angew. Chem. Int. Ed.44(14), 2109–2112 (2005).
  • Fujii R , NakagawaY, HiratakeJ, SogabeA, SakataK. Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity. Protein Eng. Des. Sel.18(2), 93–101 (2005).
  • Hawwa R , LarsenSD, RatiaK, MesecarAD. Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from deinococcus radiodurans.J. Mol. Biol.393(1), 36–57 (2009).
  • Morley KL , KazlauskasRJ. Improving enzyme properties: when are closer mutations better?Trends Biotechnol.23(5), 231–237 (2005).
  • Paramesvaran J , HibbertEG, RussellAJ, DalbyPA. Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies.Protein Eng. Des. Sel.22(7), 401–411 (2009).
  • Parikh MR , MatsumuraI. Site-saturation mutagenesis is more efficient than DNA shuffling for the directed evolution of β-fucosidase from β-galactosidase.J. Mol. Biol.352(3), 621–628 (2005).
  • Fasan R , MeharennaYT, SnowCD, PoulosTL, ArnoldFH. Evolutionary history of a specialized P450 propane monooxygenase.J. Mol. Biol.383(5), 1069–1080 (2008).
  • Larock RC . Comprehensive Organic Transformations: A Guide to Functional Group Preparations (Second Edition). Wiley-VCH, NY, USA (1999).
  • Nannemann DP , KaufmannKW, MeilerJ, BachmannBO. Design and directed evolution of a dideoxy purine nucleoside phosphorylase.Protein Eng. Des. Sel.23(8), 607–616 (2010).
  • Zanghellini A , JiangL, WollacottAMet al. New algorithms and an in silico benchmark for computational enzyme design. Protein Sci. 15(12), 2785–2794 (2006).
  • Jiang L , AlthoffEA, ClementeFR et al. De novo computational design of retro-aldol enzymes. Science319(5868), 1387–1391 (2008).
  • Siegel JB , ZanghelliniA, LovickHMet al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels–Alder reaction. Science 329(5989), 309–313 (2010).
  • Koder RL , AndersonJL, SolomonLA, ReddyKS, MoserCC, DuttonPL. Design and engineering of an O2 transport protein. Nature458(7236), 305–309 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.