319
Views
0
CrossRef citations to date
0
Altmetric
Perspective

CO and CO-Releasing Molecules in Medicinal Chemistry

Pages 175-188 | Published online: 30 Jan 2013

References

  • Mann BE . Carbon monoxide: an essential signalling molecule.Top. Organomet. Chem.32, 247–285 (2010).
  • Wu LY , WangR. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications.Pharmacol. Rev.57(4), 585–630 (2005).
  • Abraham NG , KappasA. Pharmacological and clinical aspects of heme oxygenase.Pharmacol. Rev.60(1), 79–127 (2008).
  • Ryter SW , AlamJ, ChoiAMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications.Physiol. Rev.86(2), 583–650 (2006).
  • Bilban M , HaschemiA, WegielB, ChinBY, WagnerO, OtterbeinLE. Heme oxygenase and carbon monoxide initiate homeostatic signaling.J. Mol. Med.86(3), 267–279 (2008).
  • Otterbein LE , ZuckerbraunBS, HagaMet al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat. Med. 9(2), 183–190 (2003).
  • Motterlini R , OtterbeinLE. The therapeutic potential of carbon monoxide.Nat. Rev. Drug Discov.9(9), 728–742 (2010).
  • Kao LW , NanagasKA. Toxicity associated with carbon monoxide.Clin. Lab. Med.26(1), 99–125 (2006).
  • Pitchumony TS , SpinglerB, MotterliniR, AlbertoR. Derivatives of sodium boranocarbonate as novel CO-releasing molecules (CO-RMs).Chimia62(4), 277–279 (2008).
  • Pitchumony TS , SpinglerB, MotterliniR, AlbertoR. Syntheses, structural characterization and CO releasing properties of boranocarbonate [H3BCO2H]- derivatives. Org. Biomol. Chem.8(21), 4849–4854 (2010).
  • Alberto R , MotterliniR. Chemistry and biological activities of CO-releasing molecules (CORMs) and transition metal complexes.Dalton Trans. (17), 1651–1660 (2007).
  • Zimmermann A , LefflerCW, TcheranovaD, FedinecAL, ParfenovaH. Cerebroprotective effects of the CO-releasing molecule CORM-A1 against seizure-induced neonatal vascular injury.Am. J. Physiol. Heart Circ. Physiol.293(4), H2501–H2507 (2007).
  • Romão CC , BlättlerWA, SeixasJD, BernardesGJL. Developing drug molecules for therapy with carbon monoxide.Chem. Soc. Rev.41(9), 3571–3583 (2012).
  • Desmard M , DavidgeKS, BouvetOet al. A carbon monoxide-releasing molecule (CORM-3) exerts bactericidal activity against Pseudomonas aeruginosa and improves survival in an animal model of bacteraemia. FASEB J. 23(4), 1023–1031 (2009).
  • Foresti R , MotterliniR. Interaction of carbon monoxide with transition metals: evolutionary insights into drug target discovery.Curr. Drug Targets11(12), 1595–1604 (2010).
  • Goldbaum LR , RamirezRG, AbsalonKB. What is the mechanism of carbon-monoxide toxicity?Aviat. Space Environ. Med.46(10), 1289–1291 (1975).
  • Zuckerbraun BS , ChinBY, BilbanMet al. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J. 21(4), 1099–1106 (2007).
  • Davidge KS , SanguinettiG, YeeCHet al. Carbon monoxide-releasing antibacterial molecules target respiration and global transcriptional regulators. J. Biol. Chem. 284(7), 4516–4524 (2009).
  • Boczkowski J , PoderosoJJ, MotterliniR. CO-metal interaction: vital signaling from a lethal gas.Trends in Biochem. Sci.31(11), 614–621 (2006).
  • Ma XL , SayedN, BeuveA, van den Akker F. NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism. EMBO J.26(2), 578–588 (2007).
  • Bilban M , BachFH, OtterbeinSLet al. Carbon monoxide orchestrates a protective response through PPAR gamma. Immunity 24(5), 601–610 (2006).
  • Chin BY , JiangG, WegielBet al. Hypoxia-inducible factor 1 alpha stabilization by carbon monoxide results in cytoprotective preconditioning. Proc. Natl Acad. Sci. USA 104(12), 5109–5114 (2007).
  • Kemp PJ . Hemeoxygenase-2 as an O-2 sensor in K+ channel-dependent chemotransduction. Biochem. Biophys. Res. Commun.338(1), 648–652 (2005).
  • Roth M , RuppM, HofmannSet al. Heme oxygenase-2 and large-conductance Ca(2+)-activated K(+) channels lung vascular effects of hypoxia. Am. J. Respir. Crit. Care Med. 180(4), 353–364 (2009).
  • Liu YC , WuSN. BAY 41–2272, a potent activator of soluble guanylyl cyclase, stimulates calcium elevation and calcium-activated potassium current in pituitary GH(3) cells.Clin. Exp. Pharmacol. Physiol.32(12), 1078–1087 (2005).
  • Tavares AFN , TeixeiraM, RomaoCC, SeixasJD, NobreLS, SaraivaLM. Reactive oxygen species mediate bactericidal killing elicited by carbon monoxide-releasing molecules.J. Biol. Chem.286(30), 26708–26717 (2011).
  • Mizuguchi S , CaprettaA, SuehiroSet al. Carbon monoxide-releasing molecule CORM-3 suppresses vascular endothelial cell SOD-1/SOD-2 activity while up-regulating the cell surface levels of SOD-3 in a heparin-dependent manner. Free Radic. Biol. Med. 49(10), 1534–1541 (2010).
  • Sun BW , ZouXQ, ChenYL, ZhangP, ShiGS. Preconditioning of Carbon monoxide releasing molecule-derived CO attenuates LPS-induced activation of HUVEC.Int. J. Biol. Sci.4(5), 270–278 (2008).
  • Cepinskas G , KatadaK, BihariA, PotterRF. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice.Am. J. Physiol.-Gastr. Liver Physiol.294(1), G184–G191 (2008).
  • Almeida AS , QueirogaCSF, SousaMFQ, AlvesPM, VieiraHLA. Carbon monoxide modulates apoptosis by reinforcing oxidative metabolism in astrocytes role of Bcl-2.J. Biol. Chem.287(14), 10761–10770 (2012).
  • Lancel S , HassounSM, FavoryR, DecosterB, MotterliniR, NeviereR. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis.J. Pharmacol. Exp. Ther.329(2), 641–648 (2009).
  • Piantadosi CA , CarrawayMS, BabikerA, SulimanHB. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1.Circ. Res.103(11), U1232–U1260 (2008).
  • Zobi F , BlacqueO. Reactivity of 17 e- complex [ReII(Br)4(CO)(2)](2-) with bridging aromatic ligands. Characterization and CO-releasing properties. Dalton Trans.40(18), 4994–5001 (2011).
  • Zobi F , BlacqueO, JacobsRA, SchaubMC, BogdanovaAY. 17 e- rhenium dicarbonyl CO-releasing molecules on a cobalamin scaffold for biological application.Dalton Trans.41(2), 370–378 (2012).
  • Zobi F , DegondaA. CO-releasing properties of cis-trans-[Re-II(CO)(2)Br2L2](n) complexes. Nucl. Med. Biol.37(6), 712–712 (2010).
  • Zobi F , DegondaA, SchaubMC, BogdanovaAY. CO releasing properties and cytoprotective effect of cis-trans- [Re-II(CO)(2)Br2L2](n) complexes. Inorg. Chem.49(16), 7313–7322 (2010).
  • Decaluwe K , PauwelsB, VerpoestS, Van de Voorde J. Divergent mechanisms involved in CO and CORM-2 induced vasorelaxation. Eur. J. Pharmacol.674(2–3), 370–377 (2012).
  • Whitty A . Growing PAINS in academic drug discovery.Future Med. Chem.3(7), 797–801 (2011).
  • Nobre LS , SeixasJD, RomaoCC, SaraivaLM. Antimicrobial action of carbon monoxide-releasing compounds.Antimicrob. Agents Chemother.51(12), 4303–4307 (2007).
  • Bannenberg GL , VieiraHLA. Therapeutic applications of the gaseous mediators carbon monoxide and hydrogen sulfide.Expert. Opin. Ther. Pat.19(5), 663–682 (2009).
  • Pena AC , PenachoN, Mancio-SilvaLet al. A novel carbon monoxide-releasing molecule fully protects mice from severe malaria. Antimicrob. Agents Chemother. 56(3), 1281–1290 (2012).
  • Marques AR , KromerL, GalloDJet al. Generation of carbon monoxide releasing molecules (CO-RMs) as drug candidates for the treatment of acute liver injury: targeting of CO-RMs to the liver. Organometallics 31(16), 5810–5822 (2012).
  • Fiumana E , ParfenovaH, JaggarJH, LefflerCW. Carbon monoxide mediates vasodilator effects of glutamate in isolated pressurized cerebral arterioles of newborn pigs.Am. J. Physiol. Heart Circul. Physiol.284(4), H1073–H1079 (2003).
  • Sun BW , BihariA, ChenXet al. Carbon monoxide (CO)-releasing molecule (CORM)-liberated CO attenuates inflammatory response in the liver of thermally injured mice. FASEB J. 21(6), A768–A768 (2007).
  • Kooli A , Kermorvant-DucheminE, SennlaubFet al. trans-Arachidonic acids induce a heme oxygenase-dependent vasorelaxation of cerebral microvasculature. Free Rad. Biol. Med. 44(5), 815–825 (2008).
  • Sun BW , SunH, LiuC, ShenJ, ChenZY, ChenX. Role of CO-releasing molecules liberated CO in attenuating leukocytes sequestration and inflammatory responses in the lung of thermally injured mice.J. Surg. Res.139(1), 128–135 (2007).
  • Pizarro MD , RodriguezJV, MamprinMEet al. Protective effects of a carbon monoxide-releasing molecule (CORM-3) during hepatic cold preservation. Cryobiology 58(3), 248–255 (2009).
  • Ferrandiz ML , MaicasN, Garcia-AmandisIet al. Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis. Ann. Rheum. Dis. 67(9), 1211–1217 (2008).
  • Ryan MJ , JerniganNL, DrummondHAet al. Renal vascular responses to CORM-A1 in the mouse. Pharmacol. Res. 54(1), 24–29 (2006).
  • Seveso M , VadoriM, BesenzonFet al. Anti-inflammatory responses and tolerability following the in vivo administration of a carbon monoxide-releasing molecule in primates. Xenotransplantation 12(5), 393–393 (2005).
  • Seveso M , VadoriM, BosioEet al. Pharmacological effects and tolerability profile of a carbon monoxide-releasing molecule (CORM-3) in primates. Am. J. Transplant. 5, 306–307 (2005).
  • Kramkowski K , LeszczynskaA, MogielnickiA, MotterliniR, ChlopickiS, BuczkoW. The comparison of antithrombotic properties of CORM-3 and CORM-A1 in arterial thrombosis in rats.Vasc. Pharmacol.56(5–6), 382–382 (2012).
  • Sawle P , HammadJ, FairlambIJSet al. Bioactive properties of iron-containing carbon monoxide-releasing molecules. J. Pharm. Exp. Ther. 318(1), 403–410 (2006).
  • Fairlamb IJS , LynamJM, MoultonBEet al. Eta(1)-2-pyrone metal carbonyl complexes as CO-releasing molecules (CO-RMs): a delicate balance between stability and CO liberation. Dalton Trans. (33), 3603–3605 (2007).
  • Romanski S , KrausB, GuttentagMet al. Acyloxybutadiene tricarbonyl iron complexes as enzyme-triggered CO-releasing molecules (ET-CORMs): a structure-activity relationship study. Dalton Trans. 41(45), 13862–13875 (2012).
  • Romanski S , KrausB, SchatzschneiderU, NeudorflJM, AmslingerS, SchmalzHG. Acyloxybutadiene-iron tricarbonyl complexes as enzyme-triggered CO-releasing molecules (ET-CORMs).Angew. Chem. Int. Ed.50(18), 2392–2396 (2011).
  • Niesel J , PintoA, N‘DongoHWPet al. Photoinduced CO release, cellular uptake and cytotoxicity of a tris(pyrazolyl) methane (tpm) manganese tricarbonyl complex. Chem. Commun. (15), 1798–1800 (2008).
  • Santos-Silva T , MukhopadhyayA, SeixasJD, BernardesGJL, RomaoCC, RomaoMJ. Towards improved therapeutic CORMs: understanding the reactivity of CORM-3 with proteins.Curr. Med. Chem.18(22), 3361–3366 (2011).
  • Motterlini R . Carbon monoxide-releasing molecules (CO-RMs): vasodilatory, anti-ischaemic and anti-inflammatory activities.Biochem. Soc. Trans.35, 1142–1146 (2007).
  • Hewison L , CrookSH, JohnsonTRet al. Iron indenyl carbonyl compounds: CO-releasing molecules. Dalton Trans. 39(38), 8967–8975 (2010).
  • Zhang WQ , WhitwoodAC, FairlambIJS, LynamJM. Group 6 carbon monoxide-releasing metal complexes with biologically-compatible leaving groups.Inorg. Chem.49(19), 8941–8952 (2010).
  • Atkin AJ , WilliamsS, SawleP, MotterliniR, LynamJM, FairlambIJS. Mu(2)-Alkyne dicobalt(0)hexacarbonyl complexes as carbon monoxide-releasing molecules (CO-RMs): probing the release mechanism.Dalton Trans. (19), 3653–3656 (2009).
  • Scapens D , AdamsH, JohnsonTRet al. [(eta-C5H4R)Fe(CO)(2)X], X = Cl, Br, I, NO3,CO2Me and [(eta-C5H4R)Fe(CO)(3)](+), R = (CH2)(n)CO2Me (n = 0–2), and CO2CH2CH2OH: a new group of CO-releasing molecules. Dalton Trans. (43), 4962–4973 (2007).
  • Crook SH , MannBE, MeijerAJHMet al. [Mn(CO)(4){S2CNMe(CH2CO2H)}], a new water-soluble CO-releasing molecule. Dalton Trans. 40(16), 4230–4235 (2011).
  • Johnson TR , MannBE, TeasdaleIPet al. Metal carbonyls as pharmaceuticals? [Ru(CO)(3)Cl(glycinate)], a CO-releasing molecule with an extensive aqueous solution chemistry. Dalton Trans. (15), 1500–1508 (2007).
  • Bikiel DE , SolveyraEG, Di Salvo F et al. Tetrachlorocarbonyliridates: water-soluble carbon monoxide releasing molecules rate-modulated by the sixth ligand. Inorg. Chem.50(6), 2334–2345 (2011).
  • Rimmer RD , PierriAE, FordPC. Photochemically activated carbon monoxide release for biological targets. Toward developing air-stable photoCORMs labilized by visible light.Coord. Chem. Rev.256(15–16), 1509–1519 (2012).
  • Zhang WQ , AtkinAJ, FairlambIJS, WhitwoodAC, LynamJM. Synthesis and reactivity of molybdenum complexes containing functionalized alkynyl ligands: a photochemically activated CO-releasing molecule (PhotoCO-RM).Organometallics30(17), 4643–4654 (2011).
  • Rimmer RD , RichterH, FordPC. A photochemical precursor for carbon monoxide release in aerated aqueous media.Inorg. Chem.49(3), 1180–1185 (2010).
  • Mohr F , NieselJ, SchatzschneiderU, LehmannCW. Synthesis, structures, and CO releasing properties of two tricarbonyl manganese(I) complexes.Z. Anorg. Allg. Chem.638(3–4), 543–546 (2012).
  • Schatzschneider U . PhotoCORMs: Light-triggered release of carbon monoxide from the coordination sphere of transition metal complexes for biological applications.Inorg. Chim. Acta374(1), 19–23 (2011).
  • Dordelmann G , PfeifferH, BirknerA, SchatzschneiderU. Silicium dioxide nanoparticles as carriers for photoactivatable CO-releasing molecules (PhotoCORMs).Inorg. Chem.50(10), 4362–4367 (2011).
  • Schatzschneider U . Photoactivated biological activity of transition-metal complexes.Eur. J. Inorg. Chem.2010(10), 1451–1467 (2010).
  • Kunz PC , HuberW, RojasA, SchatzschneiderU, SpinglerB. Tricarbonylmanganese(I) and -rhenium(I) complexes of imidazol-based phosphane ligands: influence of the substitution pattern on the CO release properties.Eur. J. Inorg. Chem.2009(35), 5358–5366 (2009).
  • Gonzalez MA , FryNL, BurtR, DavdaR, HobbsA, MascharakPK. Designed iron carbonyls as carbon monoxide (CO) releasing molecules: rapid CO release and delivery to myoglobin in aqueous buffer, and vasorelaxation of mouse aorta.Inorg. Chem.50(7), 3127–3134 (2011).
  • Jackson CS , SchmittS, DouQP, KodankoJJ. Synthesis, characterization, and reactivity of the stable iron carbonyl complex [Fe(CO)(N4Py)](ClO4)(2): photoactivated carbon monoxide release, growth inhibitory activity, and peptide ligation. Inorg. Chem.50(12), 5336–5338 (2011).
  • Vummaleti SVC , BranduardiD, MasettiM, De Vivo M, Motterlini R, Cavalli A. Theoretical insights into the mechanism of carbon monoxide (CO) release from CO-releasing molecules. Chem. Eur. J.18(30), 9267–9275 (2012).
  • Hewison L , CrookSH, MannBEet al. New types of CO-releasing molecules (CO-RMs), based on iron dithiocarbamate complexes and [Fe(CO)(3)I(S2COEt)]. Organometallics, 31(16), 5823–5834 (2012).
  • Motterlini R , SawleP, BainsSet al. CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J. 18(14), 284–268 (2004).
  • Fagone P , ManganoK, QuattrocchiCet al. Prevention of clinical and histological signs of proteolipid protein (PLP)-induced experimental allergic encephalomyelitis (EAE) in mice by the water-soluble carbon monoxide-releasing molecule (CORM)-A1. Clin. Exp. Immunol. 163(3), 368–374 (2011).
  • Halilovic A , PatilKA, BellnerLet al. Knockdown of heme oxygenase-2 impairs corneal epithelial cell wound healing. J. Cell. Physiol. 226(7), 1732–1740 (2011).
  • Kretschmer R , GessnerG, GorlsH, HeinemannSH, WesterhausenM. Dicarbonyl-bis(cysteamine)iron(II) a light induced carbon monoxide releasing molecule based on iron (CORM-S1).J. Inorg. Biochem.105(1), 6–9 (2011).
  • Atkin AJ , FairlambIJS, WardJS, LynamJM. CO Release from norbornadiene iron(0) tricarbonyl complexes: importance of ligand dissociation.Organometallics31(16), 5894–5902 (2012).
  • Meister K , NieselJ, SchatzschneiderU, Metzler-NolteN, SchmidtDA, HavenithM. Label-free imaging of metal-carbonyl complexes in live cells by raman microspectroscopy.Angew. Chem. Int. Ed.49(19), 3310–3312 (2010).
  • Mann BE . CO-Releasing molecules: a personal view.Organometallics31(16), 5728–5735 (2012).
  • Huber W , LinderR, NieselJ, SchatzschneiderU, SpinglerB, KunzPC. A comparative study of tricarbonylmanganese photoactivatable CO releasing molecules (PhotoCORMs) by using the myoglobin assay and time-resolved IR spectroscopy.Eur. J. Inorg. Chem.2012(19), 3140–3146 (2012).
  • McLean S , MannBE, PooleRK. Sulfite species enhance carbon monoxide release from CO-releasing molecules: implications for the deoxymyoglobin assay of activity.Anal. Biochem.427(1), 36–40 (2012).
  • Atkin AJ , LynamJM, MoultonBEet al. Modification of the deoxy-myoglobin/carbonmonoxy-myoglobin UV-vis assay for reliable determination of CO-release rates from organometallic carbonyl complexes. Dalton Trans. 40(21), 5755–5761 (2011).

Patents

  • Romao CC, Rodrigues SS, Seixas JD et al.: WO2007/35105 (2007).
  • Hemocorm Ltd, University of Sheffield: WO003953 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.