54
Views
0
CrossRef citations to date
0
Altmetric
Review

Quantum Kernel Applications In Medicinal Chemistry

&
Pages 1479-1494 | Published online: 02 Aug 2012

References

  • Huang L , MassaL, KarleJ. Kernel energy method illustrated with peptides.Int. J. Quantum Chem.103, 808–817 (2005).
  • Huang L , MassaL, KarleJ. Kernel energy method: application to insulin.Proc. Natl Acad. Sci. USA102(36), 12690–12693 (2005).
  • Huang L , MassaL, KarleJ. Kernel energy method: application to DNA.Biochemistry44(50), 16747–16752 (2005).
  • Huang L , MassaL, KarleJ. The kernel energy method: basis fuctions and quantum methods.Int. J. Quantum Chem.106, 447–457 (2006).
  • Huang L , MassaL, KarleJ. Kernel energy method: application to a tRNA.Proc. Natl Acad. Sci. USA103(5), 1233–1237 (2006).
  • Huang L , MassaL, KarleJ. Drug–target interaction energies by the kernel energy method: aminoglycoside drugs and ribosomal A-site RNA target.Proc. Natl Acad. Sci. USA104(11), 4261–4266 (2007).
  • Huang L , MassaL, KarleJ. Kernel energy method: the interaction energy of the collagen triple helix.J. Chem. Theor. and Comp.3(4), 1337–1341 (2007).
  • Huang L , MassaL, KarleJ. The Kernel energy method of quantum mechanical approximation carried to fourth order terms.Proc. Natl Acad. Sci. USA105(6), 1849–1854 (2008).
  • Huang L , MassaL, KarleI, KarleJ. Calculation of strong and weak interactions in TDA1 and RangDP52 by kernel energy method.Proc. Natl Acad. Sci. USA106(10), 3664–3669 (2009).
  • Huang L , MassaL, KarleJ. Kernel energy method applied to vesicular stomatitis virus nucleoprotein.Proc. Natl Acad. Sci. USA106(6), 1731–1736 (2009).
  • Huang L , MassaL, KarleJ. Quantum kernels and quantum crystallography: applications in biochemistry. In: Quantum Biochemistry, Electronic Structure and Biological Activity. Matta CF (Ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 3–60 (2010).
  • Weiss SN , HuangL, MassaL. A generalized higher-order kernel energy approximation method.J. Comput. Chem.31(16), 2889–2899 (2010).
  • Huang L , MassaL. Kernel energy method applied to an energetic nitrate ester.Int. J. Quant. Chem.111(10), 2180–2186 (2011).
  • Huang L , MassaL. Kernel energy method: drug–target interaction energies for drug design. Proceedings of: the International Symposium on Theory and Computations in Molecular and Materials Sciences, Biology, and Pharmacology. Int. J. Quant. Chem.110(15), 2886–2893 (2010).
  • Huang L , MassaL. The Kernel energy method: construction of 3 & 4 tuple kernels from a list of double kernel interactions.Theochem.962(1–3), 72–79 (2010).
  • Huang L , BohorquezH, MattaCF, MassaL. The kernel energy method: application to graphene and extended aromatics.Int. J. Quant. Chem.111, 4150–4157 (2011).
  • Gopi H , RoyRS, RaghothamaSR, KarleI. β-hairpins generated from hybrid peptide sequences containing both α- and β-amino acids.Chim. Acta.85, 3313–3330 (2002).
  • Karle I , GopiHN, BalaramP. Peptide hybrids containing α- and β-amino acids:structure of a decapeptide β-hairpin with two facing β-phenylalanine residues.Proc. Natl Acad. Sci. USA98, 3716–3719 (2001).
  • Karle IL , PerozzoMA, MishraVK, BalaramP. Crystal structure of the channel-forming polypeptide antiamoebin in a membrane-mimetic environment.Proc. Natl Acad. Sci. USA95, 5501–5504 (1998).
  • Karle IL , Flippen-AndersonJL, AgarwallaS, BalaramP. Conformation of the flexible bent helix of Leu‘-Zervamicin in Crystal C and a possible gating action for ion passage.Biopolymers34, 721–735 (1994).
  • Karle IL , DasC, BalaramP. De novo protein design:crystallograohic characterization of a synthetic peptide containing independent helical and hairpin domains. Proc. Natl Acad. Sci. USA97, 3034–3037 (2000).
  • Karle I , GopiHN, BalaramP. Crystal structure of a hydrophobic 19-residue peptide helix containing three centrally located D amino acids.Proc. Natl Acad. Sci. USA100, 13946–13951 (2003).
  • Vijayalakshmi S , RaoRB, KarleIL, BalaramP. Comparison of helix-stabilizing effects of α,α-dislkyl glycines with linear and cycloalkyl side chains.Biopolymers53, 84–98 (2000).
  • Hehre WJ , StewartRF, PopleJA. Self-consistent molecular orbital methods. 1. Use of gaussian expansions of slater-type atomic orbitals.J. Chem. Phys.51, 2657–2664 (1969).
  • Collins JB , Schleyer PvR, Binkley JS, Pople JA. Self-consistent molecular orbital methods. 17. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys.64, 5142–5151 (1976).
  • Binkley JS , PopleJA, HehreWJ. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements.J. Am. Chem. Soc.102, 939–947 (1980).
  • Gordon MS , BinkleyJS, PopleJA, PietroWJ, HehreWJ. Self-consistent molecular orbital methods. 22. Small split-valence basis sets for second-row elements.J. Am. Chem. Soc.104, 2797–2803 (1982).
  • Pietro WJ , FranclMM, HehreWJ, DefreesDJ, PopleJA, BinkleyJS. Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis-sets for 2nd-row elements.J. Am. Chem. Soc.104, 5039–5048 (1982).
  • Dobbs KD , HehreWJ. Molecular-orbital theory of the properties of inorganic and organometallic compounds. 4. Extended basis-sets for 3rd row and 4th row, main-group elements.J. Comput. Chem.7, 359–378 (1986).
  • Dobbs KD , HehreWJ. Molecular-orbital theory of the properties of inorganic and organometallic compounds. 5. Extended basis-sets for 1st-row transition-metals.J. Comput. Chem.8, 861–879 (1987).
  • Dobbs KD , HehreWJ. Molecular-orbital theory of the properties of inorganic and organometallic compounds. 6. Extended basis-sets for 2nd-row transition-metals.J. Comput. Chem.8, 880–893 (1987).
  • Schaefer A , HornH, AhlrichsR. Fully optimized contracted Gaussian-basis sets for atoms Li to Kr.J. Chem. Phys.97, 2571–2577 (1992).
  • Schaefer A , HuberC, AhlrichsR. Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr.J. Chem. Phys.100, 5829–5835 (1994).
  • Ditchfield R , HehreWJ, PopleJA. Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules.J. Chem. Phys.54, 724–728 (1971).
  • Hehre WJ , DitchfieldR, PopleJA. Self-consistent molecular orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules.J. Chem. Phys.56, 2257–2261 (1972).
  • Hariharan PC , PopleJA. Influence of polarization functions on molecular-orbital hydrogenation energies.Mol. Phys.27, 209–214 (1974).
  • Gordon MS . The isomers of silacyclopropane.Chem. Phys. Lett.76, 163–168 (1980).
  • Hariharan PC , PopleJA. Influence of polarization functions on molecular-orbital hydrogenation energies.Theo. Chim. Acta28, 213–222 (1973).
  • Blaudeau JP , McGrathMP, CurtissLA, RadomL. Extension of Gaussian-2 (G2). Theory to molecules containing third-row atoms K and Ca.J. Chem. Phys.107, 5016–5021 (1997).
  • Francl MM , PietroWJ, HehreWJet al. Self-Consistent molecular orbital methods. 23. A polarization-type basis set for 2nd-row elements. J. Chem. Phys. 77, 3654–3665 (1982).
  • Binning RC Jr, Curtiss LA. Compact contracted basis-sets for 3rd-row atoms – GA-KR. J. Comput. Chem.11, 1206–1216 (1990).
  • Rassolov VA , PopleJA, RatnerMA, WindusTL. 6–31G* basis set for atoms K through Zn.J. Chem. Phys.109, 1223–1229 (1998).
  • Rassolov VA , RatnerMA, PopleJA, RedfernPC, CurtissLA. 6–31G* basis set for third-row atoms.J. Comput. Chem.22, 976–984 (2001).
  • Dunning TH Jr, Hay PJ. Modern Theoretical Chemistry III. Schaefer HF (Ed.). Plenum, NY, USA 1–28 (1976).
  • Petersson GA , Al-LahamMA. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms.J. Chem. Phys.94, 6081–6090 (1991).
  • Petersson GA , BennettA, TensfeldtTG, Al-LahamMA, ShirleyWA, MantzarisJ. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms.J. Chem. Phys.89, 2193–2218 (1988).
  • Woon DE , DunningTH Jr. Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J. Chem. Phys.98, 1358–1371 (1993).
  • Kendall RA , DunningTH Jr, Harrison RJ. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys.96, 6796–6806 (1992).
  • Dunning TH Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys.90, 1007–1023 (1989).
  • Peterson KA , WoonDE, DunningTH Jr. Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction. J. Chem. Phys.100, 7410–7415 (1994).
  • Wilson A , MourikTV, DunningTH Jr. Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon. J. Mol. Struct. (Theochem)388, 339–350 (1996).
  • Dewar M , ThielW. Ground-States of Molecules. 38. The MNDO method: approximations and parameters.J. Am. Chem. Soc.99, 4899–4907 (1977).
  • James JP . A major enhancement in computational chemistry accuracy: MOPAC 2002, Stewart Computational Chemistry. Fujitsu Computational Chemistry Seminars (2001).
  • Roothan CCJ . New developments in molecular orbital theory.Rev. Mod. Phys.23, 69–89 (1951).
  • Kohn W , ShamLJ. Self-consistent equations including exchange and correlation effects.Phys. Rev.140, A1133–A1138 (1965).
  • Pople JA , SeegerR, KrishnanR. Variational configuration interaction methods and comparison with perturbation theory.Int. J. Quant. Chem. Symp.11, 149–163 (1977).
  • Moller C , PlessetMS. Note on an approximation treatment for many-electron systems.Phys. Rev.46, 618–622 (1934).
  • Bartlett RJ , PurvisGD. Many-body perturbation-theory, coupled-pair many-electron theory, and importance of quadruple excitations for correlation problem.Int. J. Quant. Chem.14, 561–581 (1978).
  • Sanger F , TuppyH. The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates.Biochem. J.49, 481–490 (1951).
  • Hodgkin D . The crystal structure of insulin.Verh. Schweiz. Naturforsch. Ges.150, 93–101 (1970).
  • Gursky O , BadgerJ, LiY, CasparD. Conformational changes in cubic insulin crystals in the pH range 7–11.Biophys. J.63, 1210–1220 (1992).
  • Wahl MC , RaoST, SundaralingamM. Crystal structure of the B-DNA hexamer d(CTCGAG): model for an A-to-B transition.Biophys. J.70(6), 2857–2866 (1996).
  • Leonard GA , HambleyTW, McAuley-HechtK. Anthracycline–DNA interactions at unfavourable base-pair triplet-binding sites: structures of d(CGGCCG)/daunomycin and d(TGGCCA)/adriamycin complexes.Acta Crystallogr. sect. D: Biol. Crystallogr.49, 458–467 (1993).
  • Soler-Lopez M , MalininaL, TereshkoV, ZarytovaV, SubiranaJA. Interaction of zinc ions with d(CGCAATTGCG) in a 2.9 A resolution x-ray structure.Biol. Inorg. Chem.7, 533–538 (2002).
  • Vargason JM , HendersonK, HoS. A crystallographic map of the transition from B-DNA to A-DNA.Proc. Natl Acad. Sci. USA.8, 7265–7270 (2001).
  • Tari LW , SeccoAS. Base-pair opening and spermine binding–B-DNA features displayed in the crystal structure of a gal operon fragment: implications for protein–DNA recognition.Nucleic Acids Res.23, 2065–2073 (1995).
  • Valls N , UsonI, SubirianaCJA. A cubic arrangement of DNA double helices based on nickel-guanine interactions.J. Am. Chem. Soc.126, 7812–7816 (2004).
  • Qiu H , DewanJC, SeemanNC. A DNA decamer with a sticky end: the crystal structure of d-CGACGATCGT.J. Mol. Biol.267, 881–898 (1997).
  • Rozenberg H , RabinovichD, FrolowF, HegdeRS. Structural code for DNA recognition revealed in crystal structures of papillomavirus E2-DNA targets.Proc. Natl Acad. Sci. USA95, 15194–15199 (1998).
  • Nunn CM , NeidleSJ. Sequence-dependent drug binding to the minor groove of DNA: crystal structure of the DNA dodecamer d(CGCAAATTTGCG)2 complexed with propamidine.Med. Chem.38, 2317–2325 (1995).
  • Egli M , WilliamsLD, GaoQ, RichA. Structure of the pure-spermine form of Z-DNA (magnesium free) at 1-A resolution.Biochemistry30, 1388–11402 (1991).
  • Shakked Z , RabinovichD, KennardO, CruseWB, SalisburySA, ViswamitraMA. Sequence-dependent conformation of an A-DNA double helix: the crystal structure of the octamer d(G-G-T-A-T-A-C-C).J. Mol. Biol.166, 83–201 (1983).
  • Russell R , MurrayJ, LentzenG, HaddadJ, MobasheryS. The complex of a designer antibiotic with a model aminoacyl site of the 30S ribosomal subunit revealed by x-ray crystallography.J. Am. Chem. Soc.125, 3410–3411 (2003).
  • Zhang X , GreenTJ, TsaoJ, QiuS, LuoM. Role of intermolecular interactions of vesicular stomatitis virus nucleoprotein in RNA encapsidation.J. Virol.82, 674–682 (2008).
  • Frisch MJ , TrucksGW, SchlegelHBet al. Gaussian 09 Revision A1. Gaussian Inc., Wallingford, CT, USA (2009)
  • Yang W . Direct calculation of electron density in density-functional theory.Phys. Rev. Lett.66, 1438–1441 (1991).
  • Lee C , YangW. The divide-and-conquer density-functional approach: molecular internal rotation and density of states.J. Chem. Phys.96, 2408–2411 (1992).
  • Yang W , Lee T-S. A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules. J. Chem. Phys.103, 5674–5678 (1995).
  • Lee T -S, York DM, Yang W. Linear-scaling semiempirical quantum calculations for macromolecules. J. Chem. Phys.105, 2744 (1996).
  • York DM , Lee T-S, Yang W. Parameterization and efficient implementation of a solvent model for linear-scaling semiempirical quantum mechanical calculations of biological macromolecules. Chem. Phys. Lett.263, 297–304 (1996).
  • York DM , Lee T-S, Yang W. Quantum mechanical study of aqueous polarization effects on biological macromolecules. J. Am. Chem. Soc.118, 10940–10941 (1996).
  • Mezey PG . Macromolecular density matrices and electron densities with adjustable nuclear geometries.J. Math. Chem.18, 141–168 (1995).
  • Exner TE , MezeyPG. The field-adapted ADMA approach: introducing point charges.J. Phys. Chem. A108, 4301–4309 (2004).
  • Zhang DW , ZhangJZH. Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein–molecule interaction energy.J. Chem. Phys.119, 3599–3605 (2003).
  • Zhang DW , XiangY, ZhangJZH. New advance in computational chemistry: full quantum mechanical ab initio computation of streptavidin-biotin interaction energy.J. Phys. Chem. B107, 12039–12041 (2003).
  • Zhang JZH , HeX. A new method for direct calculation of total energy of protein.J. Chem. Phys.122(3), 031103 (2005).
  • Chen X , ZhangY, ZhangJZH. An efficient approach for ab initio energy calculation of biopolymers. J. Chem. Phys.122, 184105 (2005).
  • Kitaura K , IkeoE, AsadaT. Fragment molecular orbital method: an approximate computational method for large molecules.Chem. Phys. Lett.313, 701–706 (1999).
  • Deev V , CollinsMA. Approximate ab initio energies by systematic molecular fragmentation. J. Chem. Phys.122, 154102 (2005).
  • Collins MA , DeevVA. Accuracy and efficiency of electronic energies from systematic molecular fragmentation.J. Chem. Phys.125, 104104 (2006).
  • Li W , LiS, JiangYS. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules.J. Phys. Chem. A111, 2193–2199 (2007).
  • Řezáč J , DennisR, SalahubDR. Multilevel fragment-based approach (MFBA): a novel hybrid computational method for the study of large molecules.J. Chem. Theory Comput.6, 91–99 (2010).
  • Babu K , GadreSR. Ab initio quality one-electron properties of large molecules: development and testing of molecular tailoring approach. J. Comput. Chem.24, 484–495 (2002).
  • Gadre SR , GaneshV. Molecular tailoring approach: towards PC-based ab initio treatment of large molecules. J. Theor. Comput. Chem.5, 835–855 (2006).
  • Gadre SR , RahalkarAP, GaneshV. Ab initio treatment of large molecules: cut-and-stitch the Tailor’s way. IANCAS News Bulletin V, 267–276 (2006).
  • Elango M , SubramanianV, RahalkarAP, GadreSR, SathyamurthyN. Structure, energetics, and reactivity of boric acid nanotubes: a molecular tailoring approach.J. Phys. Chem. A112, 7699–7704 (2008).
  • Gadre SR , Jovan Jose KV, Rahalkar AP. Molecular tailoring approach for exploring structures, energetics and properties of clusters. J. Chem. Sci.122, 47–56 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.