547
Views
0
CrossRef citations to date
0
Altmetric
Review

Bismuth Compounds In Medicinal Chemistry

, , &
Pages 1495-1523 | Published online: 02 Aug 2012

References

  • Mohan RS . Green bismuth.Nat. Chem.2, 336 (2010).
  • Suzuki H . Introduction. In: Organobismuth Chemistry. Suzuki H, Matano Y (Eds). Elsevier, Amsterdam, The Netherlands, 1–20 (2001).
  • Suzuki H , IkegamiT, MatanoY. Bismuth in organic transformations.Synthesis249–267 (1997).
  • Barton DHR , FinetJP. Bismuth(V) reagents in organic synthesis.Pure Appl. Chem.59, 937–946 (1987).
  • Le Roux C , DubacJ. Bismuth(III) chloride and triflate: novel catalysts for acylation and sulfonylation reactions. Survey and mechanistic aspects.Synlett.181–200 (2002).
  • Gaspard-Iloughmane H , Le Roux C. Bismuth(III) triflate in organic synthesis. Eur. J. Org. Chem.12, 2517–2532 (2004).
  • Leonard NM , WielandLC, MohanRS. Applications of bismuth(III) compounds in organic synthesis.Tetrahedron58, 8373–8397 (2002).
  • Ho TL . Hard soft acids bases (HSAB) principle and organic chemistry.Chem. Rev.75, 1–20 (1975).
  • Gaspard-Iloughmane H , Le Roux C. Recent advances in the use of bismuth(III) triflate in organic synthesis: an update. Trends. Org. Chem.11, 65–80 (2006).
  • Gaspard-Iloughmane H , Le Roux C. Bi(III) Lewis acids. In: Acid Catalysis in Modern Organic Chemistry. Yamamoto H, Ishihara K (Eds). John Wiley & Sons, New York, NY, USA, 551–588 (2008).
  • Peyronneau M , ArrondoC, VendierL, RoquesN, Le Roux C. An inexpensive and simple process for the preparation of antimony(III) and bismuth(III) triflates. J. Mol. Catal. A. Chem.211, 89–91 (2004).
  • Repichet S , ZwickA, VendierL, Le Roux C, Dubac J. A practical, cheap and environmentally friendly preparation of bismuth(III) trifluoromethanesulfonate. Tetra. Lett.43, 993–995 (2002).
  • Antoniotti S . Bismuth(III) tris(trifluoromethanesulfonate).Synlett15, 1566–1567 (2003).
  • Antoniotti S , DuñachE. Recent uses of bismuth derivatives in organic synthesis.Chem Inform36(9), 679–688 (2004).
  • Hua RM . Recent advances in bismuth-catalyzed organic synthesis.Curr. Org. Synth.5, 1–27 (2008).
  • Komatsu N . Bismuth compounds in organic transformations. In: Organobismuth Chemistry. Suzuki H, Matano Y (Eds). Elsevier, Amsterdam, The Netherlands 371–440 (2001).
  • Loh T -P, Chua G-L. Activation of reactions by Lewis acids derived from Ga, In, Sb and Bi. In: Advances in Organic Synthesis. Atta-Ur-Rahman (Eds). Bentham Science Publishers, Sharjah, UAE, 173–214 (2005).
  • Marshall JA . Organic chemistry of Bi(III) compounds.Chemtracts Org. Chem.5, 1064–1075 (1997).
  • Mulamoottil VA . Bismuth(III) nitrate pentahydrate – a versatile reagent in organic synthesis.Synlett.17, 2699–2700 (2005).
  • Postel M , DuñachE. Bismuth derivatives for the oxidation of organic compounds.Coord. Chem. Rev.155, 127–144 (1996).
  • Vidal S . Bismuth(III) derivatives: new catalysts.Synlett13, 1194–1195 (2001).
  • Bothwell JM , KrabbeSW, MohanRS. Applications of bismuth(III) compounds in organic synthesis.Chem. Soc. Rev.40, 4649–4707 (2011).
  • Salvador JAR , PintoRMA, SilvestreSM. Recent advances of bismuth(III) salts in organic chemistry: application to the synthesis of aliphatics, alicyclics, aromatics, amino acids and peptides, terpenes and steroids of pharmaceutical interest.Mini-Rev. Org. Chem.6, 241–274 (2009).
  • Salvador JAR , PintoRMA, SilvestreSM. Recent advances of bismuth(III) salts in organic chemistry: application to the synthesis of heterocycles of pharmaceutical interest.Curr. Org. Synth.6, 426–470 (2009).
  • Salvador JAR , SilvestreSM, PintoRMA. Bismuth(III) reagents in steroid and terpene chemistry.Molecules16, 2884–2913 (2011).
  • Salvador JAR , SilvestreSM, PintoRMA. Chapter 8. Highlights of bismuth(III) salts applications in the synthesis of compounds of pharmaceutical interest. In: Bismuth: Characteristics, Production and Applications. Ghatak KP, Bhattacharya S (Eds). NovaScience Publishers, New York, NY, USA (2011).
  • Ollevier T , NadeauE, DesyroyV. Bismuth(III) trifluoromethanesulfonate. In: Electronic Encyclopedia of Reagents For Organic Synthesis (e-EROS). Fuchs Pl (Ed.). Wiley, Chichester, UK (2009).
  • Dancey J , SausvilleEA. Issues and progress with protein kinase inhibitors for cancer treatment.Nat. Rev. Drug Discov.2, 296–313 (2003).
  • Kundu SK , MahindaratneMPD, QuinteroMV, BaoA, NegreteaGR. One-pot reductive cyclization to anti-tumor quinazoline precursors.Arkivocii, 33–42 (2008).
  • Nagaiah K , VenkateshamA, RaoRSet al. Synthesis of new cis-fused tetrahydrochromeno[4,3-b]quinolines and their antiproliferative activity studies against MDA-MB-231 and MCF-7 breast cancer cell lines Bioorg. Med. Chem. Lett. 20, 3259–3264 (2010).
  • Kamal A , ReddyKL, DevaiahV, ShankaraiahN, ReddyDR. Recent advances in the solid-phase combinatorial synthetic strategies for the benzodiazepine based privileged structures.Mini-Rev. Med. Chem.6, 53–69 (2006).
  • Ramajayam R , GiridharR, YadavMR. Current scenario of 1,4-diazepines as potent biomolecules – a mini review.Mini-Rev. Med. Chem.7, 793–812 (2007).
  • Kamal A , ReddyPSMM, ReddyDR. An efficient catalytic deprotection of thioacetals employing bismuth triflate: synthesis of pyrrolo[2,1-c][1,4]benzodiazepines.Tetra. Lett.44, 2857–2860 (2003).
  • Lindner A , SchmidtA. N-heterocyclic carbenes of indazole as reagents: indazol-3-ylidene-mediated syntheses of amidines from thiolactams of pyrrolobenzodiazepines. Synlett20, 2961–2964 (2008).
  • Miao H -Q, Liu H, Navarro E, Kussie P, Zhu Z. Development of heparanase inhibitors for anti-cancer therapy. Curr. Med. Chem.13, 2101–2111 (2006).
  • Valerio S , PastoreA, AdinolfiM, IadonisiA. Sequential one-pot gycosidations catalytically promoted: unprecedented strategy in oligosaccharide synthesis for the straightforward assemblage of the anti-tumor PI-88 pentasaccharide.J. Org. Chem.73, 4496–4503 (2008).
  • Green AP , LeeATL, ThomasEJ. Total synthesis of a 20-deoxybryostatin.Chem. Commun.47, 7200–7202 (2011).
  • Guardiola F , DuttaPC, CodonyR, SavageGP. Cholesterol and phytosterol oxidation products: analysis, occurrence, and biological effects. AOCS Press, New York, NY, USA (2002).
  • Schroepfer GJ . Oxysterols: modulators of cholesterol metabolism and other processes.Physiol. Rev.80, 361–554 (2000).
  • Carvalho JFS , SilvaMMC, MeloM. Efficient trans-diaxial hydroxylation of Δ5-steroids. Tetrahedron66, 2455–2462 (2010).
  • Dehaen W , MashentsevaAA, SeitembetovTS. Allobetulin and its derivatives: synthesis and biological activity.Molecules47(3), 2443–2466 (2011).
  • King JF , MayoP. Terpenoid rearrangements. In: Molecular Rearrangements. Mayo P (Ed.). Interscience Publishers, John Wiley & Sons, New York, NY, USA, 771–840 (1968).
  • Salvador JAR , PintoRMA, SantosRC, Le Roux C, Beja AM, Paixao JA. Bismuth triflate-catalyzed Wagner-Meerwein rearrangement in terpenes. Application to the synthesis of the 18α-oleanane core and A-neo-18α-oleanene compounds from lupanes. Org. Biomol. Chem.7, 508–517 (2009).
  • Salvador JAR , MoreiraVM, PintoRMA, LealAS, Le Roux C. Bismuth(III) triflate-based catalytic direct opening of oleanolic hydroxy-γ-lactones to afford 12-oxo-28-carboxylic acids. Adv. Synth. Catal.353, 2637–2642 (2011).
  • Winum J -Y, Scozzafava A, Montero J-L, Supuran CT. Therapeutic potential of sulfamides as enzyme inhibitors. Med. Res. Rev.26, 767–792 (2006).
  • Reitz AB , SmithGR, ParkerMH. The role of sulfamide derivatives in medicinal chemistry: a patent review (2006–2008).Exp. Opin. Ther. Pat.19, 1449–1453 (2009).
  • Adibi H , MassahAR, MajnooniMBet al. Synthesis, characterization, and antimicrobial evaluation of sulfonamides containing n-acyl moieties catalyzed by bismuth(III) salts under both solvent and solvent-free conditions. Synth. Commun. 40, 2753–2766 (2010).
  • Eey ST -C, Lear MJ. A bismuth(III)-catalyzed Friedel–Crafts cyclization and stereocontrolled organocatalytic approach to (–)-platensimycin. Org. Lett.12, 5510–5513 (2010).
  • Johnson JH , MeyersE, O‘SullivanJet al. Culpin, a novel hydroquinone antibiotic of fungal origin. J. Antibiot. 42, 1515–1517 (1989).
  • Sunasee R , CliveDLJ. A route to 1,4-disubstituted aromatics and its application to the synthesis of the antibiotic culpin.J. Org. Chem.72, 8016–8020 (2008).
  • He HY , WilliamsonRT, ShenBet al. Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J. Am. Chem. Soc. 124, 9729–9736 (2002).
  • Adinolfi M , GiacominiD, IadonisiA, QuintavallaA, ValerioS. Synthesis of the mannopeptimycin disaccharide and its conjugation with 4-alkylidene-β-lactams.Eur. J. Org. Chem.17, 2895–2899 (2008).
  • Badgujar DM , TalawarMB, AsthanaSN, MahulikarPP. Novel synthesis of biologically active nitro heterocyclic compound.J. Sci. Ind. Res.67, 54–57 (2008).
  • Schirmer RH , Krauth-SiegelRL, SchulzGE. Coenzymes and Cofactors. Dolphin D, Poulson R, Avramovic O (Eds). John Wiley and Sons, New York, NY, USA, 553–596 (1989).
  • Senturk M , TalazO, EkinciD, CavdarH, KufreviogluOI. In vitro inhibition of human erythrocyte glutathione reductase by some new organic nitrates. Bioorg. Med. Chem. Lett.19, 3661–3663 (2009).
  • Giridhar T , ReddyRR, KumarAS, MouliGVPC. Bismuth chloride mediated synthesis, antimicrobial, and anti-inflammatory activities of new 4-aryl-2-amino thiazoles.Phosphorus Sulfur Silicon Relat. Elem.183, 2058–2072 (2008).
  • Curini M , CravottoG, EpifanoF, GiannoneG. Chemistry and biological activity of natural and synthetic prenyloxycoumarins.Curr. Med. Chem.13, 199–222 (2006).
  • Kulkami MV , KulkarniGM, Lin C-H, Sun C-M. Recent advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Curr. Med. Chem.13, 2795–2818 (2006).
  • Fylaktakidou KC , Hadjipavlou-LitinaDJ, LitinasKE, NicolaidesDN. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities.Curr. Pharm. Design10, 3813–3833 (2004).
  • O‘Reilly RA . Vitamin K and the oral anticoagulant drugs.Annu. Rev. Med.27, 245–261 (1976).
  • Rueping M , NachtsheimBJ, SugionoE. Direct catalytic benzylation of hydroxycoumarin – efficient synthesis of warfarin derivatives and analogues.Synlett10, 1549–1553 (2010).
  • Saini A , SanjayK, SandhuJS. Hantzsch reaction: recent advances in Hantzsch 1,4-dihydropyridines.J. Sci. Ind. Res.67, 95–111 (2008).
  • Bhattia RS , KrishanaP, Sureshb, Sandhub JS. Bismuth trichloride – a clean, green catalyst for the synthesis of Hantzsch 1,4-dihydropyridines (DHPs). J. Indian Chem. Soc.87, 707–710 (2010).
  • Mashraqui SH , KarnikMA. Bismuth nitrate pentahydrate: a convenient reagent for the oxidation of Hantzsch 1,4-dihydropyridines.Synthesis1, 713–714 (1998).
  • Rajanarendar E , RameshP, SrinivasM, RamuK, MohanG. Solid-supported synthesis of isoxazole-substituted 1,4-dihydropyridines by modified Hantzsch method and their aromatization.Synth. Commun.36, 665–671 (2006).
  • Adibi H , HajipourAR. A convenient and efficient protocol for oxidative aromatization of Hantzsch 1,4-dihydropyridines using benzyltriphenylphosphonium peroxymonosulfate under almost neutral reaction conditions.Bioorg. Med. Chem. Lett.17, 1008–1012 (2007).
  • Parker JO . Drug therapy: nitrate therapy in stable angina pectoris.N. Engl. J. Med.338, 520–531 (1998).
  • Cavdar H , SaracogluN. Synthesis of new β-hydroxy nitrate esters as potential glycomimetics or vasodilators.Eur. J. Org. Chem.27, 4615–4621 (2008).
  • Ekinci D , ÇavdarH, TalazO, SentürkM, SupuranCT. NO-releasing esters show carbonic anhydrase inhibitory action against human isoforms I and II.Bioorg. Med. Chem.18, 3559–3563 (2010).
  • Supuran CT , ScozzafavaA. Carbonic anhydrases as targets for medicinal chemistry.Bioorg. Med. Chem.15, 4336–4350 (2007).
  • Tumiatti V , MinariniA, BolognesiML, MilelliA, RosiniM, MelchiorreC. Tacrine derivatives and Alzheimer’s disease.Curr. Med. Chem.17, 1825–1838 (2010).
  • da Costa JS , PisoniDS, da Silva CB, Petzhold CL, Russowsky D, Ceschi MA. Lewis acid promoted Friedländer condensation reactions between anthranilonitrile and ketones for the synthesis of tacrine and its analogues. J. Brazil. Chem. Soc.20, 1448–1454 (2009).
  • Astudillo SL , VallejosCG, GutiérrezCM, de la Guarda W, Kouznetsov VV. An eficient synthesis of 2,3-diaryl-2-azabicyclooctanones via BiCl3-catalyzed three-component aza Diels-Alder reaction. Lett. Org. Chem.5, 559–562 (2008).
  • Nicolaou KC , CarenziGEA, JesoV. Construction of highly functionalized medium-sized rings: synthesis of hyperforin and perforatumone model systems.Angew. Chem. Int. Ed. Engl.44, 3895–3899 (2005).
  • Barnes PJ . How corticosteroids control inflammation: quintiles prize lecture 2005.British J. Pharmacol.148, 245–254 (2006).
  • Fu XY , TannCH, ThiruvengadamTK. Process improvements in the synthesis of corticosteroid 9,11β-epoxides.Org. Process Res. Dev.5, 376–382 (2001).
  • Pinto RMA , SalvadorJAR, Le Roux C, Paixão JA. Bismuth(III) triflate-catalyzed direct conversion of corticosteroids into highly functionalized 17-ketosteroids by cleavage of the C17-dihydroxyacetone side chain. J. Org. Chem.74, 8488–8491 (2009).
  • Salvador JAR , SilvestreSM, MoreiraVM. Catalytic oxidative processes in steroid chemistry: allylic oxidation, β-selective epoxidation, alcohol oxidation and remote functionalization reactions.Curr. Org. Chem.10, 2227–2257 (2006).
  • Brunel JM , LetourneuxY. Recent advances in the synthesis of spermine and spermidine analogs of the shark aminosterol squalamine.Eur. J. Org. Chem.20, 3897–3907 (2003).
  • Arsenou ES , FousterisMA, KoutsoureaAI, NikolaropoulsSS. 7-Keto-Δ5-steroids: key-molecules owning particular biological and chemical interest. Mini-Rev. Med. Chem.3, 557–567 (2003).
  • Salvador JAR , SilvestreSM. Bismuth-catalyzed allylic oxidation using t-butyl hydroperoxide. Tetrahedron Lett.46, 2581–2584 (2005).
  • Bajwa JS , JiangX, SladeJ, PrasadK, RepicO, BlacklockTJ. In situ generation of Et3SiBr from BiBr3 and Et3SiH and its use in preparation of dialkyl ethers. Tetrahedron Lett.43, 6709–6713 (2002).
  • Slade JS , ViveloJA, ParkerDJet al. A practical synthesis of the dual matrix metalloprotease/tumor necrosis factor inhibitor MMP090. Org. Process Res. Dev. 9, 608–620 (2005).
  • Wang J , LiH, ZouG, Wang L-X. Novel template-assembled oligosaccharide clusters as epitope mimics for HIV-neutralizing antibody 2G12. Design, synthesis, and antibody binding study. Org. Biomol. Chem.5, 1529–1540 (2007).
  • Calarese DA , Lee H-K, Huang C-Y et al. Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc. Natl Acad. Sci. USA102, 13372–13377 (2005).
  • Wang S -K, Liang P-H, Astronomo RD et al. Targeting the carbohydrates on HIV-1: interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc. Natl Acad. Sci. USA105, 3690–3695 (2008).
  • Pastore A , AdinolfiM, IadonisiA, ValerioS. One-pot catalytic glycosidation/Fmoc removal – an iterable sequence for straightforward assembly of oligosaccharides related to HIV gp120.Eur. J. Org. Chem.711–718 (2010).
  • Pastore A , AdinolfiM, IadonisiA, ValerioS. Rapid assembly of gp120 oligosaccharide moieties via one-pot glycosidation–deprotection sequences.Carbohydr. Res.345, 1316–1323 (2010).
  • Zingg J -M. Molecular and cellular activities of vitamin E analogues. Mini-Rev. Med. Chem.7, 545–560 (2007).
  • Bonrath W , DittelC, GiraudiL, NetscherT, PabstT. Rare earth triflate catalysts in the synthesis of Vitamin E and its derivatives.Catal. Today121, 65–70 (2007).
  • Bismuth-mediated organic reactions. In: Topics in Current Chemistry (Volume 331). Ollevier T (Ed.). Springer-Verlag, Berlin, Germany (2012).
  • Kwie FHA , Baudoin-DehouxC, BlonskiC, LherbetC. Bismuth(III) triflate: a safe and easily handled precursor for triflic acid: application to the esterification reaction.Synth. Commun.40, 1082–1087 (2010).
  • Ge H -M, Yang W-H, Zhang J, Tan R-X. Antioxidant oligostilbenoids from the stem wood of Hopea hainanensis.J. Agr. Food Chem.57, 5756–5761 (2009).
  • Ge HM , HuangB, TanSH, ShiDH, SongYC, TanRX. Bioactive oligostilbenoids from the stem bark of Hopea exalata.J. Nat. Prod.69, 1800–1802 (2006).
  • Yamada M , Hayashi K-i, Ikeda S et al. Inhibitory activity of plant stilbene oligomers against DNA topoisomerase II. Biol. Pharm. Bull.29, 1504–1507 (2006).
  • Dai JR , HallockYF, CardellinaII JH, Boyd MR. HIV-inhibitory and cytotoxic oligostilbenes from the leaves of Hopea malibato.J. Nat. Prod.61, 351–353 (1998).
  • Huang K -S, Lin M, Cheng G-F. Anti-inflammatory tetramers of resveratrol from the roots of Vitis amurensis and the conformations of the seven-membered ring in some ligostilbenes. Phytochemistry58, 357–362 (2001).
  • Kim I , ChoiJ. A versatile approach to oligostilbenoid natural products – synthesis of permethylated analogues of viniferifuran, malibatol A, and shoreaphenol.Org. Biomol. Chem.7, 2788–2795 (2009).
  • Nakamura M , NiiyamaK, YamakawaT. Versatile method for the synthesis of 4-substituted 6-methyl-3-oxabicyclo[3.3.1]non-6-ene-1-methanol derivatives: prins-type cyclization reaction catalyzed by hafnium triflate.Tetrahedron Lett.50, 6462–6465 (2009).
  • Sans RG , ChozasMG. Historical aspects and applications of barbituric acid derivatives – a review.Pharmazie43, 827–829 (1988).
  • Chebib M , JohnstonGAR. GABA-activated ligand gated ion channels: Medicinal chemistry and molecular biology.J. Med. Chem.43, 1427–1447 (2000).
  • Khan KM , AliM, AjazA, PerveenS, ChoudharyMI, Rahman A-U. Synthesis of 5-arylidene barbiturates: a novel class of DPPH radical scavengers. Lett. Drug Des. Discov.5, 286–291 (2008).
  • Tanaka K , ChenX, YonedaF. Oxidation of thiol with 5-arylidene-1,3-dimethylbarbituric acid: application to synthesis of unsymmetrical disulfide.Tetrahedron44, 3241–3249 (1988).
  • Tanaka K , ChenX, KimuraT, YonedaF. 5-arylidene 1,3-dimethylbarbituric acid derivatives, mild organic oxidants for allylic and benzylic alcohols.Chem. Pharm. Bull.36, 60–69 (1988).
  • Tietze LF , BrandS, BrumbyT, FennenJ. Intramolecular hetero Diels–Alder reactions of oxadienes: influence of substituents of the ether on the diastereoselectivity.Angew. Chem. Int. Ed. Engl.29, 665–667 (1990).
  • Tietze LF , BeifussU, LökösM, RischerM, GöhrtA, ScheldrickGM. Synthesis of enantiomerically pure heterosteroids by intramolecular hetero Diels-Alder reaction.Angew. Chem. Int. Ed. Engl.29, 527–529 (1990).
  • Khan KM , AliM, FarooquiTA, KhanM, TahaM, PerveenS. An improved method for the synthesis of 5-arylidene barbiturates using BiCl3. J. Chem. Soc. Pak.31, 823–828 (2009).
  • Juergens UR , DethlefsenU, SteinkampG, GillissenA, RepgesRHV. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial.Respir. Med.97, 738–742 (2003).
  • Kehrl W , SonnemannU, DethlefsenU. Therapy for acute nonpurulent rhinosinusitis with cineole: results of a double-blind, randomized, placebo-controlled trial.Laryngoscope114, 738–742 (2004).
  • Moteki H , HibasamiH, YamadaY, KatsuzakiH, ImaiK, KomiyaT. Specific induction of apoptosis by 1,8-cineole in two human leukemia cell lines, but not a in human stomach cancer cell line.Oncol. Rep.9, 757–760 (2002).
  • Kelly BD , AllenJM, TundelRE, LambertTH. Multicatalytic synthesis of complex tetrahydrofurans involving bismuth(III) triflate catalyzed intramolecular hydroalkoxylation of unactivated olefins.Org. Lett.11, 1381–1383 (2009).
  • Sun H : Biological Chemistry of Arsenic, Antimony and Bismuth. John Wiley & Sons Ltd, Singapore (2011).
  • Ahmad S , IsabAA, AliS, Al-ArfajAR. Perspectives in bioinorganic chemistry of some metal based therapeutic agents.Polyhedron25, 1633–1645 (2006).
  • Briand GG , BurfordN. Bismuth compounds and preparations with biological or medicinal relevance.Chem. Rev.99, 2601–2657 (1999).
  • Sun HZ , LiHY, SadlerPJ. The biological and medicinal chemistry of bismuth.Chem. Ber. Rec.130, 669–681 (1997).
  • Sigel A . Bismuth in medicine. In: Metal Ions in Biological Systems, Volume 41: Metal Ions and Their Complexes in Medication. CRC Press, London, UK, 333–378 (2004).
  • Tiekink ERT . Antimony and bismuth compounds in oncology.Crit. Rev. Oncol. Hematol.42, 217–224 (2002).
  • Li H , SunH. Recent advances in bioinorganic chemistry of bismuth.Curr. Opin. Chem. Biol.16, 74–83 (2012).
  • Ge RG , SunHZ. Bioinorganic chemistry of bismuth and antimony: Target sites of metallodrugs.Acc. Chem. Res.40, 267–274 (2007).
  • Yang N , SunH. Biological chemistry of antimony and bismuth. In: Biological Chemistry of Arsenic, Antimony and Bismuth. Sun H (Ed.). John Wiley & Sons Ltd, Singapore (2011).
  • Silvestru C , BreunigHJ, AlthausH. Structural chemistry of bismuth compounds. I. Organobismuth derivatives.Chem. Rev.99, 3277–3327 (1999).
  • Mendis AHW , MarshallBJ. Helicobacter pylori and bismuth. In: Biological Chemistry of Arsenic, Antimony and Bismuth. Sun H (Ed.). John Wiley & Sons Ltd, Singapore (2011).
  • Li W , JinL, ZhuN, HouX, DengF, SunH. Structure of colloidal bismuth subcitrate (CBS) in dilute HCl: unique assembly of bismuth citrate dinuclear units ([Bi(cit)2Bi]2-). J. Am. Chem. Soc.125, 2408–12409 (2003).
  • Andrews PC , DeaconGB, ForsythCM, JunkPC, KumarI, MaguireM. Towards a structural understanding of the anti-ulcer and anti-gastritis drug bismuth subsalicylate.Angew. Chem. Int. Ed. Engl.45, 5638–5642 (2006).
  • Chey WD , WongBCY. American College of Gastroenterology guideline on the management of Helicobacter pylori infection. Am. J. Gastroenterol.102(8), 1808–1825 (2007).
  • Malfertheiner P , MegraudF, O‘MorainC. Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut56, 772–781. (2007).
  • Malfertheiner P , BazzoliF, DelchierJCet al. Helicobacter pylori eradication with a capsule containing bismuth subcitrate potassium, metronidazole, and tetracycline given with omeprazole versus clarithromycin-based triple therapy: a randomised, open-label, non-inferiority, Phase 3 trial. Lancet377, 905–913 (2011).
  • Tsang C -N, Ho K-S, Sun H, Chan W-T. Tracking Bismuth anti-ulcer drug uptake in single Helicobacter pylori cells. J. Am. Chem. Soc.133, 7355–7357 (2011).
  • Ge R , SunX, GuQet al. A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori. J. Biol. Inorg. Chem. 12, 831–842 (2007).
  • Cun S , SunH. A zinc-binding site by negative selection induces metallodrug susceptibility in an essential chaperonin.Proc. Natl Acad. Sci. USA107, 4943–4948 (2010).
  • Chen R , SoMH, YangJ, DengF, Che C-M, Sun H. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate Chem. Commun. 2265–2267 (2006).
  • Chen R , ChengG, SoMHet al. Bismuth subcarbonate nanoparticles fabricated by water-in-oil microemulsion-assisted hydrothermal process exhibit anti-Helicobacter pylori properties. Mat. Res. Bull. 45, 654–658 (2010).
  • Shaikh AR , GiridharR, MegraudF, YadavMR. Metalloantibiotics: synthesis, characterization and antimicrobial evaluation of bismuth-fluoroquinolone complexes against Helicobacter pylori.Acta Pharm.59, 259–271 (2009).
  • Andrews PC , FerreroRL, JunkPCet al. Bismuth(III) complexes derived from non-steroidal anti-inflammatory drugs and their activity against Helicobacter pylori. Dalton Trans. 39, 2861–2868 (2010).
  • Andrews PC , DeaconGB, FerreroRLet al. Bismuth(III) 5-sulfosalicylate complexes: structure, solubility and activity against Helicobacter pylori. Dalton Trans. 6377–6384 (2009).
  • Andrews PC , BusseM, DeaconGBet al. Structural and solution studies of phenylbismuth(III) sulfonate complexes and their activity against Helicobacter pylori. Dalton Trans. 39, 9633–9641 (2010).
  • Kotani T , NagaiD, AsahiKet al. Antibacterial properties os some cyclic organobismuth(III) compounds. Antimicrob. Agents Chemother. 49, 2729–2734 (2005).
  • Chauhan HPS , ShaikNM, SinghUP. Synthetic, spectroscopy and antimicrobial studies of bis(dialkyldithiocarbamato)diorganodithiophosphato bismuth(III) complexes.Appl. Organomet. Chem.19, 1132–1139 (2005).
  • Chauhan HPS , ShaikNM, SinghUP. Synthesis, spectroscopy characterization and in vitro studies of antimicrobial activity of bis(diorganodithiocarbamato)organodithiocarbonatobismuth(III) complexes. Appl. Organomet. Chem.20, 142–148 (2006).
  • Chauhan HPS , BakshiA, BhatiyaS. Synthetic, spectral as well as in vitro antimicrobial studies on some bismuth(III) bis(N,N-dialkyldithiocarbamato)alkylenedithiophosphates. Appl. Organomet. Chem.24, 317–325 (2010).
  • Solanki JS , TripathiUN, BhardwajA, ThapakTR. Synthesis, spectral study and antimicrobial activity of bismuth(III) 3(2´-hydroxyphenyl)-5-(4-substituted phenyl) pyrazolinates.J. Coord. Chem.61, 4025–4032 (2008).
  • Solanki JS , ThapakTR, BhardwajA, TripathiUN. Synthesis, structural characterization, and in vitro antimicrobial properties of salicylate and pyrazoline complexes of bismuth(III). J. Coord. Chem.64, 369–376 (2011).
  • Dawara L , SinghRV. Microwave-assisted synthesis, characterization, antimicrobial, and pesticidal activity of bismuth and antimony complexes with coumarin-based ligands.J. Coord. Chem.64, 931–941 (2011).
  • Shaikh AR , GiridharR, YadavMR. Bismuth-norfloxacin complex: synthesis, physicochemical and antimicrobial evaluation.Int. J. Pharm.332, 24–30 (2007).
  • Halwani M , BlommeS, SuntresZEet al. Liposomal bismuth-ethanedithiol formulations enhaces antimicrobial activity of tobramycin. Int. J. Pharm. 358, 278–284 (2008).
  • Alipour M , SuntresZE, LafrenieRM, OmriA. Attenuation of Pseudomonas aeruginosa virulence factors and biofilms by co-encapsulation of bismuth-ethanedithiol with tobramycin in liposomes. J. Antimicrob. Chemother.65, 684–693 (2010).
  • Halwani M , HebertS, SuntresZE, LafrenieRM, AzghaniAO, OmriA. Bismuth-thiol incorporation enhaces biological activities of liposomal tobramycin against bacterial biofilms and quorum sensing molecules production by Pseudomonas aeruginosa.Int. J. Pharm.373, 141–146 (2009).
  • Murafuji T , MiyoshiY, IshibashiMet al. Antifungal activity of organobismuth compounds against the yeast Saccharomyces cerevisiae: structure-activity relationship. J. Inorg. Biochem. 98, 547–552 (2004).
  • Murafuji T , FujiwaraY, YoshimatsuD, MiyakawaI, MigitaK, MikataY. Bismuth heterocycles based on a diphenyl sulfone scaffold: synthesis and substituent effect on the antifungal activity against Saccharomyces cerevisiae.Eur. J. Med. Chem.46, 519–525 (2010).
  • Sousa MC , Poiares da Silva J. Cytotoxicity induced by bismuth subcitrate in Giardia lamblia trophozoites. Toxicol. In Vitro13, 591–598 (1999).
  • Gabbiani C , MessoriL, CinelluMAet al. Outstanding plasmodicidal properties within a small panel of metallic compounds: Hints for the development of new metal-based antimalarials. J. Inorg. Biochem. 103, 310–312 (2009).
  • Andrews PC , FrankR, JunkPC, KedzierskiL, KumarI, MacLellanJG. Anti-Leishmanial activity of homo- and heteroleptic bismuth(III) carboxylates.J. Inorg. Biochem.105, 454–461 (2011).
  • Yang N , TannerJA, Zheng B-J et al. Bismuth complexes inhibit the SARS coronavirus. Angew. Chem. Int. Ed. Engl.46, 6464–6468 (2007).
  • Yang N , TannerJA, WangZet al. Inhibition of SARS coronavirus helicase by bismuth complexes. Chem. Commun. 4413–4415 (2007).
  • Tiekink ERT . Anticancer activity of molecular compounds of arsenic, antimony and bismuth. In: Biological Chemistry of Arsenic, Antimony and Bismuth. Sun H (Ed.). John Wiley & Sons Ltd, Singapore (2011).
  • Gulea A , PoirierD, RoyJet al. In vitro antileukemia, antibacterial and antifungal activities of some 3d metal complexes: Chemical synthesis and structure–activity relationships. J. Enz. Inhib. Med. Chem.23, 806–818 (2008).
  • Lukevics E , ZarumaD, AshaksJet al. Synthesis and cytotoxicity of methyl- and methoxy-substituted metal 8-quinolinethiolates. Chem. Heterocycl. Compd 44, 559–564 (2008).
  • Li H , LaiCS, WuJ, HoPC, de Vos D, Tiekink ERT. Cytotoxicity, qualitative structure-activity relationship (QSAR), and anti-tumor activity of bismuth dithiocarbamate complexes. J. Inorg. Biochem.101, 809–816 (2007).
  • Iuchi K , HatanoY, YaguraT. Heterocyclic organobismuth(III) induces apoptosis of human promyelocytic leukemic cells through activation of caspases and mitochondrial perturbation.Biochem. Pharmacol.76, 974–986 (2008).
  • Iuchi K , AkagiK, YaguraT. Heterocyclic organobismuth(III) compound targets tubulin to induce G2/M arrest in HeLa cells. J. Pharmacol. Sci.109, 573–582 (2009).
  • Zhang X -W, Xia J, Yan H-W et al. Synthesis, structure, and in vitro antiproliferative activity of cyclic hypervalent organobismuth(III) chlorides and their triphenylgermylpropionate derivatives. J. Organomet. Chem.694, 3019–3026 (2009).
  • Brechbiel MW . Targeted α-therapy: past, present, future?Dalton Trans.4918–4928 (2007).
  • Kim YS , BrechbielMW. An overview of targeted alpha therapy.Tumor Biol.33(3), 573–590 (2012).
  • Brechbiel MW , GansowOA. Synthesis of C-functionalized trans-cyclohexyldiethylenetriaminepenta-acetic acids for labelling of monoclonal antibodies with the bismuth-212 α-particle emitter. J. Chem. Soc. Perkin Trans.1, 1173–1178 (1992).
  • Ma D , McDevittMR, FinnRD, ScheinbergDA. Rapid preparation of short-lived alpha particle emitting radioimmunopharmaceuticals.Appl. Rad. Isotopes55, 463–470 (2011).
  • Milenic DE , Garmestani k, Chappell LL et al.In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. Nuclear Medicine Biol.29, 431–442 (2002).
  • Wu C , KobayashiH, SunBet al. Stereochemical influence on the stability of radio-metal complexes in vivo. Synthesis and evaluation of the four stereoisomers of 2-(p-nitrobenzyl)-trans-CyDTPA. Bioorg. Med. Chem. 5, 1925–1934 (1997).
  • Milenic DE , BradyED, GarmestaniK, AlbertPS, AbdullaA, BrechbielMW. Improved efficacy of alpha-particle-targeted radiation therapy: dual targeting of human epidermal growth factor receptor-2 and tumor-associated glycoprotein 72.Cancer166, 1059–1066 (2010).
  • Seidl C , PortM, ApostolidisCet al. Differential gene expression triggered by highly cytotoxic α-emitter-immunoconjugates in gastric cancer cells. I. Invest. New Drugs 28, 49–60 (2010).
  • Seidl C , ZöcklerC, BeckR, Quintanilla-MartinezL, BruchertseiferF, Senekowitsch-SchmidtkeR. 177Lu-immunotherapy of experimental peritoneal carcinomatosis shows comparable effectiveness to 213Bi-immunotherapy, but causes toxicity not observed with 213Bi. Eur. J. Nucl. Med. Mol. Imaging38, 312–322 (2011).
  • Wild D , FrischknechtM, ZhangHet al. Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res. 71, 1009–1018 (2011).
  • Park SI , ShenoiJ, PagelJMet al. Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: a preclinical model toward optimal consolidation therapy to eradicate minimal residual disease. Blood 116, 4231–4239 (2010).
  • Pagel JM , KenoyerAL, BäckTet al. Anti-CD45 pretargeted radioimmunotherapy using bismuth-213: high rates of complete remission and long-term survival in a mouse myeloid leukemia xenograft model. Blood 118, 703–711 (2011).
  • Jurcic JG , LarsonSM, SgourosGet al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood 100, 1233–1239 (2002).
  • Rosenblat TL , McDevittMR, MulfordDAet al. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin. Cancer Res. 16, 5303–5311 (2010).
  • Allen BJ , RajaC, RizviSet al. Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther. 4, 1318–1324 (2005).
  • Allen BJ , SinglaAA, RizviSMet al. Analysis of patient survival in a Phase I trial of systemic targeted α-therapy for metastatic melanoma. Immunother. 3, 1041–1050 (2011).
  • Raja C , GrahamP, Abbas Rizvi SM et al. Interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther.6, 846–852 (2007).
  • Cordier D , ForrerF, BruchertseiferFet al. Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-substance P: a pilot trial. Eur. J. Nucl. Med. Mol. Imaging 37, 1335–1344 (2010).

Patents

  • Robison GW, O‘Sullivan J, Meyers E, Wells JS, Del Mar JH: US4914245 (1990).
  • Salvador JAR, Silvestre SM. PT103,211 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.