166
Views
0
CrossRef citations to date
0
Altmetric
Review

Design of Inhibitors of Odcase

&
Pages 165-177 | Published online: 28 Jan 2014

References

  • Reichard P . The enzymatic synthesis of pyrimidines.Adv. Enzymol. Mol. Biol.21, 263–294 (1959).
  • Callahan BP , MillerBG. OMP decarboxylase-An enigma persists.Bioorg. Chem.35(6), 465–469 (2007).
  • Radzicka A , WolfendenR. A proficient enzyme.Science267(5194), 90–93 (1995).
  • Lewis CA Jr, Wolfenden R. Uroporphyrinogen decarboxylase as a benchmark for the catalytic proficiency of enzymes. Proc. Natl. Acad. Sci. U S A105(45), 17328–17333 (2008).
  • Jordan F , PatelH. Catalysis in enzymatic decarboxylations: comparison of selected cofactor-dependent and cofactor-independent examples.ACS Catal.3(7), 1601–1617 (2013).
  • Donovan WP , KushnerSR. Purification and characterization of orotidine-5´-monophosphate decarboxylase from Escherichia coli K-12. J. Bacteriol.156(2), 620–624 (1983).
  • Pragobpol S , GeroAM, LeeCS, O‘SullivanWJ. Orotate phosphoribosyltransferase and orotidylate decarboxylase from Crithidia luciliae: subcellular location of the enzymes and a study of substrate channeling. Arch. Biochem. Biophys.230(1), 285–293 (1984).
  • Warshel A , FlorianJ. Computer simulations of enzyme catalysis: finding out what has been optimized by evolution.Proc. Natl Acad. Sci. U S A95(11), 5950–5955 (1998).
  • Miller BG , WolfendenR. Catalytic proficiency: the unusual case of OMP decarboxylase.Annu. Rev. Biochem.71, 847–885 (2002).
  • Meza-Avina ME , WeiL, LiuYet al. Structural determinants for the inhibitory ligands of orotidine-5´-monophosphate decarboxylase. Bioorg. Med. Chem. 18(11), 4032–4041 (2010).
  • Gero AM , O‘SullivanWJ. Purines and pyrimidines in malarial parasites.Blood Cells16(2–3), 467–484 (1990).
  • Reyes P , GuganigME. Pyrimidine phosphoribosyltransferase from murine leukemia P1534J. Partial purification, substrate specificity, and evidence for its existence as a bifunctional complex with orotidine 5-phosphate decarboxylase.J. Biol. Chem.250(13), 5097–5108 (1975).
  • McClard RW , BlackMJ, LivingstoneLR, JonesME. Isolation and initial characterization of the single polypeptide that synthesizes uridine 5´-monophosphate from orotate in Ehrlich ascites carcinoma. Purification by tandem affinity chromatography of uridine- 5´-monophosphate synthase. Biochemistry19(20), 4699–4706 (1980).
  • Meza-Avina ME , WeiL, BuhendwaMG, et al. Inhibition of orotidine 5´-monophosphate decarboxylase and its therapeutic potential. Mini-Rev. Med. Chem.8(3), 239–247(2008).
  • Casper ES , ValeK, WilliamsLJ, MartinDS, YoungCW. Phase I and clinical pharmacological evaluation of biochemical modulation of 5-fluorouracil with N-(phosphonacetyl)-l-aspartic acid. Cancer Res.43(5), 2324–9 (1983).
  • Beak P , SiegelB. Mechanism of decarboxylation of 1,3-dimethylorotic acid. A model for orotidine 5´-phosphate decarboxylase.J. Am. Chem. Soc.98(12), 3601–3606 (1976).
  • Silverman RB , GroziakMP. Model chemistry for a covalent mechanism of Action of orotidine 5´-phosphate decarboxylase.J. Am. Chem. Soc.104(23), 6434–6439 (1982).
  • Acheson SA , BellJB, JonesME, WolfendenR. Orotidine-5´-monophosphate decarboxylase catalysis: kinetic isotope effects and the state of hybridization of a bound transition-state analogue.Biochemistry29(13), 3198–3202 (1990).
  • Wu N , GillonW, PaiEF. Mapping the active site-ligand interactions of orotidine 5´-monophosphate decarboxylase by crystallography.Biochemistry41(12), 4002–4011 (2002).
  • Feng WY , AustinTJ, ChewF, GronertS, WuW. The mechanism of orotidine 5´-monophosphate decarboxylase: catalysis by destabilization of the substrate.Biochemistry39(7), 1778–1783 (2000).
  • Begley TP , ApplebyTC, EalickSE. The structural basis for the remarkable catalytic proficiency of orotidine 5´-monophosphate decarboxylase.Curr. Opin. Struct. Biol.10(6), 711–718 (2000).
  • Wu N , PaiEF. Crystal structures of inhibitor complexes reveal an alternate binding mode in orotidine-5´-monophosphate decarboxylaseJ. Biol. Chem.277(31), 28080–28087 (2002).
  • Warshel A , StrajblM, VillaJ, FlorianJ. Remarkable rate enhancement of orotidine 5´-monophosphate decarboxylase is due to transition-state stabilization rather than to ground-state destabilization.Biochemistry39(48), 14728–14738 (2000).
  • Wu N , MoY, GaoJ, PaiEF. Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase.Proc. Natl Acad. Sci. U S A97(5), 2017–2022 (2000).
  • Fujihashi M , MitoK, PaiEF, MikiK. Atomic resolution structure of the orotidine 5´-monophosphate decarboxylase product complex combined with surface plasmon resonance analysis: implications for the catalytic mechanism.J. Biol. Chem.288(13), 9011–9016 (2013).
  • Lee JK , HoukKN. A proficient enzyme revisited: the predicted mechanism for orotidine monophosphate decarboxylase.Science276(5314), 942–945 (1997).
  • Lee TS , ChongLT, ChoderaJD, KollmanP. An alternative explanation for the catalytic proficiency of orotidine 5´-phosphate decarboxylase.J. Am. Chem. Soc.123(51), 12837–12848 (2001).
  • Hur S , BruiceTC. Molecular dynamic study of orotidine-5´-monophosphate decarboxylase in ground state and in intermediate state: a role of the 203–218 loop dynamics.Proc. Natl Acad. Sci. U S A99(15), 9668–9673 (2002).
  • Shostak K , JonesME. Orotidylate decarboxylase: insights into the catalytic mechanism from substrate specificity studies.Biochemistry31(48), 12155–12161 (1992).
  • Appleby TC , KinslandC, BegleyTP, EalickSE. The crystal structure and mechanism of orotidine 5´-monophosphate decarboxylase.Proc. Natl Acad. Sci. U S A97(5), 2005–2010, (2000).
  • Toth K , Amyes,TL, WoodBM, ChanK, GerltJA, RichardJP. Product deuterium isotope effects for orotidine 5´-monophosphate decarboxylase: effect of changing substrate and enzyme structure on the partitioning of the vinyl carbanion reaction intermediate.J. Am. Chem. Soc.132, 7018–7024 (2010).
  • Toth K , AmyesTL, WoodBM, ChanK, GerltJA, RichardJP. Product deuterium isotope effect for orotidine 5´-monophosphate decarboxylase: evidence for the existence of a short-lived carbanion intermediate.J. Am. Chem. Soc.129, 12946–12947 (2007).
  • Vardi-Kilshtain A , DoronD, MajorDT. Quantum and classical simulations of orotidine monophosphate decarboxylase: support for a direct decarboxylation mechanism.Biochemistry52(25), 4382–4390 (2013).
  • Amyes TL , WoodBM, ChanK, GerltJA, RichardJP. Formation and stability of a vinyl carbanion at the active site of orotidine 5´-monophosphate decarboxylase: pKa of the C-6 proton of enzyme-bound UMP.J. Am. Chem. Soc.130, 1574–1575 (2008).
  • Tsang WY , WoodBM, WongFMet al. Proton transfer from C-6 of uridine 5´-monophosphate catalyzed by orotidine 5´-monophosphate decarboxylase: formation and stability of a vinyl carbanion intermediate and the effect of a 5-fluoro substituent. J. Am. Chem. Soc. 134, 14580–14594 (2012).
  • Goryanova B , AmyesTL, GerltJA, RichardJP. OMP decarboxylase: phosphodianion binding energy is used to stabilize a vinyl carbanion intermediate.J. Am. Chem. Soc.133(17), 6545–6548 (2011).
  • Chan KK , WoodBM, FedorovAAet al. Mechanism of the orotidine 5´-monophosphate decarboxylase-catalyzed reaction: evidence for substrate destabilization. Biochemistry 48(24), 5518–5531 (2009).
  • Langley DB , ShojaeiM, ChanCet al. Structure and inhibition of orotidine 5´-monophosphate decarboxylase from Plasmodium falciparum. Biochemistry 47(12), 3842–3854 (2008).
  • Wu N , PaiEF. Crystallographic studies of native and mutant orotidine 5´ phosphate decarboxylases.Top. Curr. Chem.238, 23–42 (2004).
  • Amyes TL , RichardJP. Specificity in transition state binding: the Pauling Model revisited.Biochemistry52(12), 2021–2035 (2013).
  • Goryanova B , SpongK, AmyesTL, RichardJP. Catalysis by orotidine 5´-monophosphate decarboxylase: effect of 5-fluoro and 4´-substituents on the decarboxylation of two-part substrates.Biochemistry52(3), 537–546 (2013).
  • Poduch E , WeiL, PaiEF, KotraLP. Structural diversity and plasticity associated with nucleotides targeting orotidine monophosphate decarboxylase.J. Med. Chem.51(3), 432–438 (2008).
  • Purohit MK , PoduchE, WeiLet al. Novel cytidine-based orotidine-5´-monophosphate decarboxylase inhibitors with an unusual twist. J. Med. Chem. 55(22), 9988–9997 (2012).
  • Galmarini CM , PopowickzF, JosephB. Cytotoxic nucleoside analogs: different strategies to improve their clinical efficacy.Curr. Med. Chem.15(11), 1072–1082 (2008).
  • Uga H , KuramoriC, OhtaAet al. A new mechanism of methotrexate action revealed by target screening with affinity beads. Mol. Pharmacol. 70(5), 1832–1839 (2006).
  • Bello AM , KonforteD, PoduchEet al. Structure–activity relationships of orotidine-5´-monophosphate decarboxylase inhibitors as anticancer agents. J. Med. Chem. 52(6), 1648–1658 (2009).
  • Chen JJ , JonesME. Effect of 6-azauridine on de novo pyrimidine biosynthesis in cultured Ehrlich ascites cells. Orotate inhibition of dihydrorotase and dihydroorotase dehydrogenase. J. Biol. Chem.254(11), 4908–4914 (1979).
  • Cadman EC , DixDE, HandschumacherRE. Clinical, biological and biochemical effect of Pyrazofurin.Cancer Res.38(3), 682–698 (1978).
  • Williams RH , GerzonK, HoehnM, GormanM, deLongDC. Abstract# MICR 38, 158th American Chemical Society National Meeting. NY, USA, 7–12 September 1969.
  • Christopherson RI , LyonsSD, WilsonPK. Inhibitors of de novo nucleotide biosynthesis as drugs. Acc. Chem. Res.35, 961 (2002).
  • Sweeney MJ , DavisFA, GutowskiGE, HamillRL, HoffmanDH, PooreGA. Experimental antitumor activity of pyrazomycin.Cancer Res.33(11), 2619–2623 (1973).
  • Gutowski GE , SweeneyMJ, deLongDC, HamillRL, GerzonK. Biochemistry and biological effects of the Pyrazofurins (Pyrazomycins): initial clinical trial.Ann. NY Acad. Sci.255, 544–551 (1975).
  • Ohnuma T , RobozJ, ShapiroML, HollandJF. Pharmacological and biochemical effects of pyrazofurin in humans.Cancer Res.37(7, Pt1), 2043–2049 (1977).
  • Cihak A , VeseleyJ, SkodaJ. Azapyrimidine nucleosides: metabolism and inhibitory mechanism.Adv. Enzyme Regul.24, 335–354 (1985).
  • Miller BG , HassellAM, WolfendenR, MilburnMV, ShortSA. Anatomy of a proficient enzyme: the structure of orotidine 5´- monophosphate decarboxylase in the presence and absence of a potential transition-state analog.Proc. Natl Acad. Sci. U S A97(5), 2011–2016 (2000).
  • Poduch E , BelloAM, TangS, FujihashiM, PaiEF, KotraLP. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics.J. Med. Chem.49(16), 4937–4945 (2006).
  • Smiley JA , SalehL. Active site probes for yeast OMP decarboxylase: inhibition constants of UMP and thio-substituted UMP analogues and greatly reduced activity toward CMP-6-carboxylate.Bioorg. Chem.27(4), 297–300 (1999).
  • Gabrielsen B , KirsiJJ, KwongCDet al. In vitro and in vivo antiviral (RNA) evaluation of orotidine 5´-monophosphate decarboxylase inhibitors and analogs including 6-azauridine-5´-(ethyl methoxyalaninyl)phosphate (a 5´-monophosphate prodrug). Antiviral Chem. Chemother.5(4), 209–220 (1994).
  • Smee DF , McKernanPA, NordLDet al. Novel pyrazolo[3,4-d]pyrimidine nucleoside analog with broad-spectrum antiviral activity. Antimicrob. Agents. Chemother. 31(10), 1535–1541 (1987).
  • Morrey JD , SmeeDF, SidwellRW, TsengC. Identification of active antiviral compounds against a New York isolate of West Nile virus.Antiviral Res.55(1), 107–116 (2002).
  • Andrei G , de Clercq E. Molecular approaches for the treatment of hemorrhagic fever virus infections. Antiviral Res.22(1), 45–75 (1993).
  • Wyde PR , GilbertBE, AmbroseMW. Comparison of the anti-respiratory syncytial virus activity and toxicity of papaverine hydrochloride and pyrazofurin in vitro and in vivo. Antiviral Res.11(1), 15–26 (1989).
  • de Clercq E . Vaccinia virus inhibitors as a paradigm for the chemotherapy of poxvirus infections.Clin. Microbiol. Rev.14(2), 382–397 (2001).
  • Seymour KK , LyonsSD, PhillipsL, Rieckmann,KH, ChristophersonRI. Cytotoxic effects of inhibitors of de novo pyrimidine biosynthesis upon Plasmodium falciparum. Biochemistry33(17), 5268–5274 (1994).
  • Scott HV , GeroAM, O‘SullivanWJ. In vitro inhibition of Plasmodium falciparum by pyrazofurin, an inhibitor of pyrimidine biosynthesis de novo. Mol. Biochem. Parasitol.18(1), 3–15 (1986).
  • Elgemeie GH , ZagharyWA, AminKM, NasrTM. New trends in synthesis of pyrazole nucleosides as new antimetabolites.Nucleosides Nucleotides Nucleic Acids.24(8), 1227–1247 (2005).
  • Dorsch HM , OsundwaV, LamP. Activation of human B lymphocytes by 8´ substituted guanosine derivatives.Immunol. Lett.17(2), 125–131 (1988).
  • Wicker LS , BoltzRC Jr, Nichols EA, Miller BJ, Sigal NH, Peterson LB. Large activated B cells are the primary B-cell target of 8-bromoguanosine and 8-mercaptoguanosine. Cell. Immunol.106(2), 318–329 (1987).
  • Koo GC , JewellME, ManyakCL, SigalNH, WickerLS. Activation of murine natural killer cells and macrophages by 8-bromoguanosine.J. Immunol.140(9), 3249–3252 (1988).
  • Wicker LS , AshtonWT, BoltzRC Jr et al. 5-halo-6-phenylpyrimidinones and 8-substituted guanosines: biological response modifiers with similar effects on B cells. Cell. Immunol.112(1), 156–165 (1988).
  • Richard KA , MortensenRF, TraceyDE. Cytokines involved in the augmentation of murine natural killer cell activity by pyrimidinones in vivo. J. Biol. Response Mod.6(6), 647–663 (1987).
  • Skulnick HI , WeedSD, EidsonEE, RenisHE, WierengaW, StringfellowDA. Pyrimidinones. 1. 2-amino-5-halo-6-aryl-4(3H)-pyrimidinones. Interferon-inducing antiviral agents.J. Med. Chem.28(12), 1864–1869 (1985).
  • Brideau RJ , WolcottJA. Effect of pyrimidinone treatment on lethal and immunosuppressive murine cytomegalovirus infection.Antimicrob. Agents Chemother.28(4), 485–488 (1985).
  • Wierenga W . Antiviral and other bioactivities of pyrimidinones.Pharmacol. Ther.30(1), 67–89 (1985).
  • Goodman MG , HennenWJ. Distinct effects of dual substitution on inductive and differentiative activities of C8-substituted guanine ribonucleosides.Cell. Immunol.102, 395–402 (1986).
  • Reller ME , ChenWH, DaltonJ, LichayMA, DumlerJS. Multiplex 5´ nuclease quantitative real-time PCR for clinical diagnosis of malaria and species-level identification and epidemiologic evaluation of malaria-causing parasites, includingPlasmodium knowlesi. J. Clin. Microbiol.51(9), 2931–2938 (2013).
  • Goh XT , LimYA, VythilingamIet al. Increased detection of Plasmodium knowlesi in Sandakan division, Sabah as revealed by PlasmoNex™. Malar. J. 12, 264 (2013).
  • van Dyke K , TremblayGC, LantzCH, Szustkiewicz,C. The source of purines and pyrimidines inPlasmodium berghei. Am. J. Trop. Med. Hyg.19(2), 202–208 (1970).
  • Sherman IW . Biochemistry of Plasmodium (malarial parasites). Microbiol. Rev.43(4), 453–495 (1979).
  • Scheibel LW , SchermanIW. Malaria: Principles and Practice of Malariology. Wernsdorfer WH, McGreggor I (Eds). Churchill Livingstone, London, UK, 234–242 (1988).
  • Crowther GJ , NapuliAJ, GilliganJHet al. Identification of inhibitors for putative malaria drug targets among novel antimalarial compounds. Mol. Biochem. Parasitol. 175(1), 21–29 (2011).
  • Seymour KK , LyonsSD, PhillipsL, RieckmannKH, ChristophersonRI. Cytotoxic effects of inhibitors of de novo pyrimidine biosynthesis upon Plasmodium falciparum. Biochemistry33(17), 5268–5274 (1994).
  • Yadav MK , PandeySK, SwatiD. Drug target prioritization in Plasmodium falciparum through metabolic network analysis, and inhibitor designing using virtual screening and docking approach. J. Bioinform. Comput. Biol.11(4), 1350003 (2013).
  • Bello AM , PoduchE, FujihashiMet al. A potent, covalent inhibitor of orotidine 5´-monophosphate decarboxylase with antimalarial activity. J. Med. Chem. 50(5), 915–921 (2007).
  • Bello AM , PoduchE, LiuYet al. Structure-activity relationships of C6-uridine derivatives targeting Plasmodia orotidine monophosphate decarboxylase. J. Med. Chem. 51(3), 439–448 (2008).
  • Fujihashi M , WeiL, KotraLP, PaiEF. Structural characterization of the molecular events during a slow substrate-product transition in orotidine 5´-monophosphate decarboxylase.J. Mol. Biol.387(5), 1199–1210 (2009).
  • Fujihashi M , BelloAM, PoduchEet al. An unprecedented twist to ODCase catalytic activity. J. Am. Chem. Soc. 127, 15048–15050 (2005).
  • Copeland RA . Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists. John Wiley and Sons. Inc., Hoboken, NJ, USA (2005).
  • Crandall IE , WasilewskiE, BelloAMet al. Antimalarial activities of 6-iodouridine, itsprodrugs and potential for combination therapy. J. Med. Chem. 56(6), 2348–2358 (2013).
  • Ong HB , SienkiewiczN, WyllieS, PattersonS, FairlambAH. Trypanosoma brucei (UMP synthase null mutants) are avirulent in mice, but recover virulence upon prolonged culture in vitro while retaining pyrimidine auxotrophy. Mol. Microbiol.90(2), 443–455 (2013).
  • Lewis CA , WolfendenR. Indiscriminate binding by orotidine 5´-phosphate decarboxylase of uridine 5´-phosphate derivatives with bulky anionic C6 substituents.Biochemistry46(46), 13331–13343 (2007).

Patents

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.