402
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pharmacophore Modeling for Cox-1 and -2 Inhibitors with Ligandscout in Comparison to Discovery Studio

, , , , &
Pages 1869-1881 | Published online: 15 Dec 2014

References

  • Sliwoski G , KothiwaleS, MeilerJ, LoweEWJr. Computational methods in drug discovery. Pharmacol. Rev.66 (1), 334–395 (2014).
  • Wermuth G , GanellinCR, LindbergP, MitscherLA. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl. Chem.70 (5), 1129–1143 (1998).
  • Hein M , ZilianD, SotrifferCA. Docking compared to 3D-pharmacophores: the scoring function challenge. Drug Discov. Today Technol.7 (4), E229–E236 (2010).
  • Guner O , ClementO, KurogiY. Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances. Curr. Med. Chem.11 (22), 2991–3005 (2004).
  • Wolber G , LangerT. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model.45 (1), 160–169 (2005).
  • Labute P , WilliamsC, FeherM, SourialE, SchmidtJM. Flexible alignment of small molecules. J. Med. Chem.44 (10), 1483–1490 (2001).
  • Moro S , BraiucaP, DeflorianFet al. Combined target-based and ligand-based drug design approach as a tool to define a novel 3D-pharmacophore model of human A3 adenosine receptor antagonists: pyrazolo [4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as a key study. J. Med. Chem.48 (1), 152–162 (2004).
  • Schuster D , WaltenbergerB, KirchmairJet al. Predicting cyclooxygenase inhibition by three-dimensional pharmacophoric profiling. Part I: model generation, validation and applicability in ethnopharmacology. Mol. Inf.29 (1–2), 75–86 (2010).
  • Spitzer GM , HeissM, MangoldMet al. One concept, three implementations of 3D pharmacophore-based virtual screening: distinct coverage of chemical search space. J. Chem. Inf. Model.50 (7), 1241–1247 (2010).
  • Sanders MPA , BarbosaAJM, ZarzyckaBet al. Comparative analysis of pharmacophore screening tools. J. Chem. Inf. Model.52 (6), 1607–1620 (2012).
  • Schuster D , LaggnerC, SteindlTM, LangerT. Development and validation of an in silico P450 profiler based on pharmacophore models. Curr. Drug Discov. Technol.3 (1), 1–48 (2006).
  • Rouzer CA , MarnettLJ. Cyclooxygenases: structural and functional insights. J. Lipid Res.50, S29–S34 (2009).
  • Luong C , MillerA, BarnettJ, ChowJ, RameshaC, BrownerMF. Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat. Struct. Biol.3 (11), 927–933 (1996).
  • Al-Hourani BJ , SharmaSK, SureshM, WuestF. Cyclooxygenase-2 inhibitors: a literature and patent review (2009–2010). Expert Opin. Ther. Pat.21 (9), 1339–1432 (2011).
  • Vitale P , PerroneMG, MalerbaP, LavecchiaA, ScilimatiA. Selective COX-1 inhibition as a target of theranostic novel diarylisoxazoles. Eur. J. Med. Chem.74 (0), 606–618 (2014).
  • Zarghi A , ArfaeiS. Selective COX-2 inhibitors: a review of their structure–activity relationships. Iran J. Pharm. Res.10 (4), 655–683 (2011).
  • Vuorinen A , NashevLG, OdermattA, RollingerJM, SchusterD. Pharmacophore model refinement for 11β-hydroxysteroid dehydrogenase inhibitors: search for modulators of intracellular glucocorticoid concentrations. Mol. Inf.33 (1), 15–25 (2014).
  • Mysinger MM , CarchiaM, IrwinJJ, ShoichetBK. Directory of Useful Decoys, Enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem.55 (14), 6582–6594 (2012).
  • Huang N , ShoichetBK, IrwinJJ. Benchmarking sets for molecular docking. J. Med. Chem.49 (23), 6789–6801 (2006).
  • Gaulton A , BellisLJ, BentoAPet al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res.40 (D1), D1100–D1107 (2012).
  • Loll PJ , PicotD, EkaboO, GaravitoRM. Synthesis and use of iodinated nonsteroidal antiinflammatory drug analogs as crystallographic probes of the prostaglandin H-2 synthase cyclooxygenase active site. Biochemistry35 (23), 7330–7340 (1996).
  • Gupta K , SelinskyBS, KaubCJ, KatzAK, LollPJ. The 2.0 A resolution crystal structure of prostaglandin H-2 synthase-1: structural insights into an unusual peroxidase. J. Mol. Biol.335 (2), 503–518 (2004).
  • Gupta K , SelinskyBS, LollPJ. 2.0 angstrom structure of prostaglandin H-2 synthase-1 reconstituted with a manganese porphyrin cofactor. Acta Crystallogr.D62, 151–156 (2006).
  • Kurumbail RG , StevensAM, GierseJKet al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature384 (6610), 644–648 (1996).
  • Wang JL , LimburgD, GranetoMJet al. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: the second clinical candidate having a shorter and favorable human half-life. Bioorg. Med. Chem. Lett.20 (23), 7159–7163 (2010).
  • Duggan KC , WaltersMJ, MuseeJet al. Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen. J. Biol. Chem.285 (45), 34950–34959 (2010).
  • Smith WL , DewittDL, GaravitoRM. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem.69, 145–182 (2000).
  • Malkowski MG , GinellSL, SmithWL, GaravitoRM. The productive conformation of arachidonic acid bound to prostaglandin synthase. Science289 (5486), 1933–1937 (2000).
  • Blobaum AL , MarnettLJ. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem.50 (7), 1425–1441 (2007).
  • Reininger EA , BauerR. Prostaglandin-H-synthase (PGHS)-1 and-2 microtiter assays for the testing of herbal drugs and in vitro inhibition of PGHS-isoenzyms by polyunsaturated fatty acids from Platycodi radix. Phytomedicine13 (3), 164–169 (2006).
  • OMEGA version 2.3.3. http://www.eyesopen.com. OpenEye Scientific Software, Santa Fe, NM, HawkinsPCD, SkillmanAG, WarrenGL, EllingsonBA, StahlMT. Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model.50 (4), 572–584 (2010) .
  • Halgren TA . Merck molecular force field.1. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem.17 (5–6), 490–519 (1996).
  • Brooks BR , BruccoleriRE, OlafsonBD, StatesDJ, SwaminathanS, KarplusM. CHARMM – a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem.4 (2), 187–217 (1983).
  • Lifson S , WarshelA. Consistent force field for calculations of conformations of conformations vibrational spectra and enthalpies of cycloalkane and n-alkane molecules. J. Chem. Phys.49 (11), 5116 (1968).
  • Smellie A , TeigSL, TowbinP. Poling – promoting conformational variation. J. Comput. Chem.16 (2), 171–187 (1995).
  • Varma-O'Brien SST . Finding ‘Bioactive’ Conformations using Catalyst's Conformer Generation Algorithm. Catalyst Application Note. http://accelrys.com/resource-center/case-studies/archive/studies/catalyst_conformers_0805.pdf
  • Li J , EhlersT, SutterJ, Varma-O'brienS, KirchmairJ. CAESAR: A new conformer generation algorithm based on recursive buildup and local rotational symmetry consideration. J. Chem. Inf. Model.47 (5), 1923–1932 (2007).
  • Bohm HJ . The computer program LUDI – a new method for the denovo design of enzyme inhibitors. J. Comput. Aid. Mol. Des.6 (1), 61–78 (1992).
  • Wolber G , SeidelT, BendixF, LangerT. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov. Today13 (1–2), 23–29 (2008).
  • Kabsch W . A solution for the best rotation to relate two sets of vectors. Acta Cryst.A32, 922 (1976).
  • Wolber G , DornhoferAA, LangerT. Efficient overlay of small organic molecules using 3D pharmacophores. J. Comput. Aid. Mol. Des.20 (12), 773–788 (2006).
  • Blobaum AL , MarnettLJ. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem.50 (7), 1425–1441 (2007).
  • Sidhu RS , LeeJY, YuanC, SmithWL. Comparison of cyclooxygenase-1 crystal structures: cross-talk between monomers comprising cyclooxygenase-1 homodimers. Biochemistry49 (33), 7069–7079 (2010).
  • Limongelli V , BonomiM, MarinelliLet al. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition. Proc. Natl Acad. Sci. USA107 (12), 5411–5416 (2010).
  • BioVia, Discovery Studio Vers. 2.5, San Diego, CA, USA. (2011).
  • Goodsell DS , OlsonAJ. Automated docking of substrates to proteins by simulated annealing. Proteins8 (3), 195–202 (1990).
  • Pipeline Pilot, Vers. 6.0, Accelrys Inc., San Diego, CA, USA (2011).
  • Warr WA . Scientific workflow systems: Pipeline Pilot and KNIME. J. Comput. Aid. Mol. Des.26 (7), 801–804 (2012).
  • Kirchmair J , WolberG, LaggnerC, LangerT. Comparative performance assessment of the conformational model generators omega and catalyst: a large-scale survey on the retrieval of protein-bound ligand conformations. J. Chem. Inf. Model.46 (4), 1848–1861 (2006).
  • Berman H , HenrickK, NakamuraH. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol.10 (12), 980–980 (2003).
  • Specs . www.specs.net
  • Maybridge . www.maybridge.com
  • VitasM . www.vitasmlab.com
  • DNTI project . www.uibk.ac.at/pharmazie/pharmakognosie/dnti

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.