1,409
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Extending In Silico Mechanism-of-Action Analysis by Annotating Targets with Pathways: Application to Cellular Cytotoxicity Readouts

, , , , , , , , , , , & show all
Pages 2029-2056 | Published online: 22 Dec 2014

References

  • Eggert US . The why and how of phenotypic small-molecule screens. Nat. Chem. Biol.9 (4), 206–209 (2013).
  • Drews J . Case histories, magic bullets and the state of drug discovery. Nat. Rev. Drug Discov.5 (8), 635–640 (2006).
  • Feng Y , MitchisonTJ, BenderA, YoungDW, TallaricoJA. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat. Rev. Drug Discov.8 (7), 567–578 (2009).
  • Swinney DC , AnthonyJ. How were new medicines discovered?Nat. Rev. Drug Discov.10 (7), 507–519 (2011).
  • Sams-Dodd F . Is poor research the cause of the declining productivity of the pharmaceutical industry? – An industry in need of a paradigm shift. Drug Discov. Today18 (5–6), 211–217 (2013).
  • Schenone M , DančíkV, WagnerBK, ClemonsPA. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol.9 (4), 232–240 (2013).
  • Mencher SK , WangLG. Promiscuous drugs compared with selective drugs (promiscuity can be a virtue). BMC Clin. Pharmacol.5 (3) (2005).
  • Morphy R , RankovicZ. Fragments, network biology and designing multiple ligands. Drug Discov. Today12 (3–4), 156–160 (2007).
  • Medina-Franco JL , GiulianottiMA, WelmakerGS, HoughtenRA. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today18 (9–10), 495–501 (2013).
  • Brown JB , OkunoY. Systems biology and systems chemistry: new directions for drug discovery. Chem. Biol.19 (1), 23–28 (2012).
  • Bianchi MT , BotzolakisEJ. Targeting ligand-gated ion channels in neurology and psychiatry: is pharmacological promiscuity an obstacle or an opportunity?BMC Pharmacol.10 (3) (2010).
  • Koutsoukas A , SimmsB, KirchmairJet al. From in silico target prediction to multi-target drug design: current databases, methods and applications. J. Proteomics74 (12), 2554–2574 (2011).
  • Gedeck P , KramerC, ErtlP. Computational analysis of structure-activity relationships. Prog. Med. Chem.49 (10), 113–160 (2010).
  • Glick M , JacobyE. The role of computational methods in the identification of bioactive compounds. Curr. Opin. Chem. Biol.15 (4), 540–546 (2011).
  • Chua HN , RothFP. Discovering the targets of drugs via computational systems biology. J. Biol. Chem.286 (27), 23653–23658 (2011).
  • Liggi S , DrakakisG, HendryAEet al. Extensions to in silico bioactivity predictions using pathway annotations and differential pharmacology analysis: application to xenopus laevis phenotypic readouts. Mol. Inf.32 (11–12), 1009–1024 (2013).
  • Xie L , XieL, KinningsSL, BournePE. Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annu. Rev. Pharmacol. Toxicol.52, 361–379 (2012).
  • Bender A , YoungD, JenkinsJet al. Chemogenomic data analysis: prediction of small-molecule targets and the advent of biological fingerprints. Comb. Chem. High Throughput Screen.10 (8), 719–731 (2007).
  • Jacoby E . Computational chemogenomics. Wiley Interdiscip. Rev. Comput. Mol. Sci.1 (1), 57–67 (2011).
  • Oprea TI , NielsenSK, UrsuOet al. Associating drugs, targets and clinical outcomes into an integrated network affords a new platform for computer-aided drug repurposing. Mol. Inf.30 (2–3), 100–111 (2011).
  • Napolitano F , ZhaoY, MoreiraVMet al. Drug repositioning: a machine-learning approach through data integration. J. Cheminform.5 (1), 30 (2013).
  • Bender A , ScheiberJ, GlickMet al. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. ChemMedChem.2 (6), 861–873 (2007).
  • Tatonetti NP , LiuT, AltmanRB. Predicting drug side-effects by chemical systems biology. Genome Biol.10 (9), 238 (2009).
  • Lounkine E , KeiserMJ, WhitebreadSet al. Large-scale prediction and testing of drug activity on side-effect targets. Nature486 (7403), 361–367 (2012).
  • Brouwers L , IskarM, ZellerG, van NoortV, BorkP. Network neighbors of drug targets contribute to drug side-effect similarity. PLoS ONE6 (7), e22187 (2011).
  • Yamanishi Y , KoteraM, KanehisaM, GotoS. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics26 (12), i246–i254 (2010).
  • Mestres J , Gregori-PuigjanéE, ValverdeS, SoléR V. Data completeness – the Achilles heel of drug-target networks. Nat. Biotech.26 (9), 983–984 (2008).
  • Williams AJ , EkinsS, TkachenkoV. Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation. Drug Discov. Today17 (13–14), 685–701 (2012).
  • Tiikkainen P , FrankeL. Analysis of commercial and public bioactivity databases. J. Chem. Inf. Model.52 (2), 319–326 (2012).
  • Ortwine DF , AliagasI. Physicochemical and DMPK in silico models: facilitating their use by medicinal chemists. Mol. Pharm.10 (4), 1153–1161 (2013).
  • Hood L , PerlmutterRM. The impact of systems approaches on biological problems in drug discovery. Nat. Biotechnol.22 (10), 1215–1217 (2004).
  • Schrattenholz A , SoskićV. What does systems biology mean for drug development?Curr. Med. Chem.15 (15), 1520–1528 (2008).
  • Laggner C , KokelD, SetolaVet al. Chemical informatics and target identification in a zebrafish phenotypic screen. Nat. Chem. Biol.8 (2), 144–146 (2012).
  • Keiser MJ , RothBL, ArmbrusterBN, ErnsbergerP, IrwinJJ, ShoichetBK. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol.25 (2), 197–206 (2007).
  • Fang J , KoenYM, HanzlikRP. Bioinformatic analysis of xenobiotic reactive metabolite target proteins and their interacting partners. BMC Chem. Biol.9, 5 (2009).
  • Pan Y , ChengT, WangY, BryantSH. Pathway analysis for drug repositioning based on public database mining. J. Chem. Inf. Model.54 (2), 407–418 (2014).
  • Scheiber J , ChenB, MilikMet al. Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis. J. Chem. Inf. Model.49 (2), 308–317 (2009).
  • Mak L , LiggiS, TanLet al. Anti-cancer drug development: computational strategies to identify and target proteins involved in cancer metabolism. Curr. Pharm. Des.19 (4), 532–577 (2013).
  • Tait SWG , GreenDR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol.11 (9), 621–632 (2010).
  • Koutsoukas A , LoweR, KalantarmotamediYet al. In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass naïve bayes and parzen-rosenblatt window. J. Chem. Inf. Model.53 (8), 1957–1966 (2013).
  • Kanehisa M , GotoS. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res.28 (1), 27–30 (2000).
  • The Gene Ontology Consortium . Gene ontology: tool for the unification of biology. Nat. Genet.25 (1), 25–29 (2000).
  • Binns D , DimmerE, HuntleyR, BarrellD, O'DonovanC, ApweilerR. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics25 (22), 3045–3046 (2009).
  • Prestwick Chemical, Illkirch, France, www.prestwickchemical.com/index.php?pa=26.
  • Conesa C , DossMX, AntzelevitchC, SachinidisA, SanchoJ, CarrodeguasJA. Identification of specific pluripotent stem cell death‐‐inducing small molecules by chemical screening. Stem Cell Rev. Rep.8 (1), 116–127 (2012).
  • Cortes-Ciriano I , KoutsoukasA, AbianO, GlenRC, Velazquez-CampoyA, BenderA. Experimental validation of in silico target predictions on synergistic protein targets. Medchemcomm4 (1), 278–288 (2013).
  • Gaulton A , BellisLJ, BentoAPet al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res.44 (13), 1–8 (2011).
  • HitFinder: Maybridge HitFinder Library version 11 ( 14,400 compounds, accessed 8Nov 2011).
  • Berthold MR , CebronN, DillF, GabrielTR. KNIME: the Konstanz information miner. In : Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007).Springer, 319–326 (2008).
  • MOE Molecular Operating Environment . Chemical Computing Group. www.chemcomp.com.
  • Bender A , MussaHY, GlenRC, ReilingS. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance. J. Chem. Inf. Comput. Sci.44 (5), 1708–1718 (2004).
  • O'Boyle NM , BanckM, JamesC a, MorleyC, VandermeerschT, HutchisonGR. Open babel: an open chemical toolbox. J. Cheminf.3 (1), 33 (2011).
  • Williams AJ , EkinsS. A quality alert and call for improved curation of public chemistry databases. Drug Discov. Today16 (17–18), 747–750 (2011).
  • Hettne K , CasesM, BoyerS, MestresJ. Connecting small molecules to nuclear receptor pathways. Curr. Top. Med. Chem.7 (15), 1530–1536 (2007).
  • Shmelkov E , TangZ, AifantisI, StatnikovA. Assessing quality and completeness of human transcriptional regulatory pathways on a genome-wide scale. Biol. Direct6, 15 (2011).
  • Soh D , DongD, GuoY, WongL. Consistency, comprehensiveness, and compatibility of pathway databases. BMC Bioinformatics11, 449 (2010).
  • Altman T , TraversM, KothariA, CaspiR, KarpPD. A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinformatics14 (1), 112 (2013).
  • Bolton EE , WangY, ThiessenPA. PubChem: integrated platform of small molecules and biological activities. Annu. Rep. Comput. Chem.4, 217–241 (2008).
  • Wishart DS , JewisonT, GuoACet al. HMDB 3.0 – the human metabolome database in 2013. Nucleic Acids Res.41 (Database issue), D801–D807 (2013).
  • Irwin JJ , SterlingT, MysingerMM, BolstadES, ColemanRG. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model.52 (7), 1757–1768 (2012).
  • Blum LC , ReymondJ-L. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc.131 (25), 8732–8733 (2009).
  • R Core Team . R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Flachner B , LörinczZ, CarottiAet al. A chemocentric approach to the identification of cancer targets. PLoS ONE7 (4), e35582 (2012).
  • Siegel D , YanC, RossD. NAD(P)H: quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem. Pharmacol.83 (8), 1033–1040 (2012).
  • Gillet J-P , EfferthT, RemacleJ. Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim. Biophys. Acta.1775 (2), 237–262 (2007).
  • Jazirehi AR . Regulation of apoptosis-associated genes by histone deacetylase inhibitors: implications in cancer therapy. Anticancer Drugs21 (9), 805–813 (2010).
  • Ferrier L , Serradeil-Le GalC, SchulteAMet al. Proinflammatory role of vasopressin through V1b receptors in hapten-induced experimental colitis in rodents: implication in IBD. Am. J. Physiol. Gastrointest. Liver Physiol.299 (6), G1298–G1307 (2010).
  • Low KC , TergaonkarV. Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem. Sci.38 (9), 426–434 (2013).
  • Russell MR , LevinK, RaderJet al. Combination therapy targeting the Chk1 and Wee1 kinases shows therapeutic efficacy in neuroblastoma. Cancer Res.73 (2), 776–784 (2013).
  • Patrussi L , GiommoniN, PellegriniM, GamberucciA, BaldariCT. p66Shc-dependent apoptosis requires Lck and CamKII activity. Apoptosis17 (2), 174–186 (2012).
  • Robles-Escajeda E , LermaD, NyakerigaAMet al. Searching in mother nature for anti-cancer activity: anti-proliferative and pro-apoptotic effect elicited by green barley on leukemia/lymphoma cells. PLoS ONE8 (9), e73508 (2013).
  • Garg D , HenrichS, Salo-AhenOMH, MyllykallioH, CostiMP, WadeRC. Novel approaches for targeting thymidylate synthase to overcome the resistance and toxicity of anticancer drugs. J. Med. Chem.53 (18), 6539–6549 (2010).
  • Kao C , ChaoA, TsaiCLet al. Phosphorylation of signal transducer and activator of transcription 1 reduces bortezomib-mediated apoptosis in cancer cells. Cell Death Dis.4 (2), e512 (2013).
  • Pommier Y . Drugging topoisomerases: lessons and challenges. ACS Chem. Biol.8 (1), 82–95 (2013).
  • Jelassi B , AnchelinM, ChamoutonJet al. Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors. Carcinogenesis34 (7), 1487–1496 (2013).
  • Slingerland M , CerellaC, GuchelaarHJ, DiederichM, GelderblomH. Cardiac glycosides in cancer therapy: from preclinical investigations towards clinical trials. Invest. New Drugs31 (4), 1087–1094 (2013).
  • Manning G , WhyteDB, MartinezR, HunterT, SudarsanamS. The protein kinase complement of the human genome. Science298 (5600), 1912–1934 (2002).
  • Zhang J , YangPL, GrayNS. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer9 (1), 28–39 (2009).
  • Grivennikov SI , GretenFR, KarinM. Immunity, inflammation, and cancer. Cell140 (6), 883–899 (2010).
  • Kapoor K , SimHM, AmbudkarS V. Multidrug resistance in cancer: A tale of ABC drug transporters. In : Molecular Mechanisms of Tumor Cell Resistance to Chemotherapy Resistance to Targeted Anti-Cancer Therapeutics.BonavidaB ( Ed.). Springer, New York, NY, USA, 1–34 (2013).
  • Vivier E , RauletDH, MorettaAet al. Innate or adaptive immunity? The example of natural killer cells. Science331 (6013), 44–49 (2011).
  • Wood SM , LjunggrenH-G, BrycesonYT. Insights into NK cell biology from human genetics and disease associations. Cell. Mol. Life Sci.68 (21), 3479–3493 (2011).
  • Chan CJ , AndrewsDM, SmythMJ. Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Curr. Opin. Immunol.24 (2), 246–251 (2012).
  • Yip GW , SmollichM, GötteM. Therapeutic value of glycosaminoglycans in cancer. Mol. Cancer Ther.5 (9), 2139–2148 (2006).
  • Di Domizio J , ZhangR, StaggLJet al. Binding with nucleic acids or glycosaminoglycans converts soluble protein oligomers to amyloid. J. Biol. Chem.287 (1), 736–747 (2012).
  • Groth C , FortiniME. Therapeutic approaches to modulating Notch signaling: current challenges and future prospects. Semin. Cell Dev. Biol.23 (4), 465–472 (2012).
  • Sansone P , BrombergJ. Targeting the interleukin-6/Jak/stat pathway in human malignancies. J. Clin. Oncol.30 (9), 1005–1014 (2012).
  • O'Shea JJ , PlengeR. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity36 (4), 542–550 (2012).
  • Brownlie RJ , ZamoyskaR. T cell receptor signaling networks: branched, diversified and bounded. Nat. Rev. Immunol.13 (4), 257–269 (2013).
  • Milstein O , HaginD, LaskAet al. CTLs respond with activation and granule secretion when serving as targets for T-cell recognition. Blood117 (3), 1042–1052 (2011).
  • Granata M , PanigadaD, GalatiEet al. To trim or not to trim: progression and control of DSB end resection. Cell Cycle12 (12), 1848–1860 (2013).
  • Micucci F , CapuanoC, MarchettiEet al. PI5KI-dependent signals are critical regulators of the cytolytic secretory pathway. Blood111 (8), 4165–4172 (2008).
  • Lee J-S , SmithE, ShilatifardA. The language of histone crosstalk. Cell142 (5), 682–685 (2010).
  • Verdaasdonk JS , BloomK. Centromeres: unique chromatin structures that drive chromosome segregation. Nat. Rev. Mol. Cell Biol.12 (5), 320–332 (2011).
  • Nandakumar J , CechTR. Finding the end: recruitment of telomerase to telomeres. Nat. Rev. Mol. Cell Biol.14 (2), 69–82 (2013).
  • Mahen R , VenkitaramanAR. Pattern formation in centrosome assembly. Curr. Opin. Cell Biol.24 (1), 14–23 (2012).
  • Muñoz MJ , Pérez SantangeloMS, ParonettoMPet al. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell137 (4), 708–720 (2009).
  • Wu X , WangY, WangHet al. Quinacrine inhibits cell growth and induces apoptosis in human gastric cancer cell line SGC-7901. Curr. Ther. Res.73 (1–2), 52–64 (2012).
  • Nobuhara M , SaotomeM, WatanabeTet al. Mitochondrial dysfunction caused by saturated fatty acid loading induces myocardial insulin-resistance in differentiated H9c2 myocytes: a novel ex vivo myocardial insulin-resistance model. Exp. Cell Res.319 (7), 955–966 (2013).
  • Balgi AD , FonsecaBD, DonohueEet al. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS ONE4 (9), e7124 (2009).
  • Naidu MD , AgarwalR, PenaLAet al. Lucanthone and its derivative hycanthone inhibit apurinic endonuclease-1 (APE1) by direct protein binding. PLoS ONE6 (9), e23679 (2011).
  • Ding X , ZhuF, LiT, ZhouQ, HouFF, NieJ. Numb protects renal proximal tubular cells from puromycin aminonucleoside-induced apoptosis through inhibiting Notch signaling pathway. Int. J. Biol. Sci.7 (3), 269–278 (2011).
  • Kim JY , LeeSG, ChungJ-Yet al. Ellipticine induces apoptosis in human endometrial cancer cells: the potential involvement of reactive oxygen species and mitogen-activated protein kinases. Toxicology289 (2–3), 91–102 (2011).
  • Andrews WJ , PanovaT, NormandC, GadalO, TikhonovaIG, PanovKI. Old drug, new target: ellipticines selectively inhibit RNA polymerase I transcription. J. Biol. Chem.288 (7), 4567–5582 (2013).
  • Lang E , JilaniK, ZelenakCet al. Stimulation of suicidal erythrocyte death by benzethonium. Cell. Physiol. Biochem.28 (2), 347–354 (2011).
  • Sharma N , ThomasS, GoldenEBet al. Inhibition of autophagy and induction of breast cancer cell death by mefloquine, an antimalarial agent. Cancer Lett.326 (2), 143–154 (2012).
  • Milatovic D , JenkinsJW, HoodJE, YuY, RongzhuL, AschnerM. Mefloquine neurotoxicity is mediated by non-receptor tyrosine kinase. Neurotoxicology32 (5), 578–585 (2011).
  • Wang J , LiuL, QiuHet al. Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells. PLoS ONE8 (5), e63872 (2013).
  • Shih W-L , YuF-L, ChangC-D, LiaoM-H, WuH-Y, LinP-Y. Suppression of AMF/PGI-mediated tumorigenic activities by ursolic acid in cultured hepatoma cells and in a mouse model. Mol. Carcinog.52 (10), 800–812 (2013).
  • Liu C , GongK, MaoX, LiW. Tetrandrine induces apoptosis by activating reactive oxygen species and repressing Akt activity in human hepatocellular carcinoma. Int. J. Cancer129 (6), 1519–1531 (2011).
  • Minero VG , KhadjaviA, CostelliP, BaccinoFM, BonelliG. JNK activation is required for TNFα-induced apoptosis in human hepatocarcinoma cells. Int. Immunopharmacol.17 (1), 92–98 (2013).
  • Fischer-Posovszky P , KeuperM, NagelSet al. Downregulation of FLIP by cycloheximide sensitizes human fat cells to CD95-induced apoptosis. Exp. Cell Res.317 (15), 2200–2209 (2011).
  • Cai J , LiJ, LiuW, HanY, WangH. α2-Adrenergic Receptors In Spiral Ganglion Neurons May Mediate Protective Effects Of Brimonidine And Yohimbine Against Glutamate And Hydrogen Peroxide Toxicity. Neuroscience228, 23–35 (2013).
  • Wang Y , YuX, WangFet al. Yohimbine promotes cardiac NE release and prevents LPS-induced cardiac dysfunction via blockade of presynaptic α2A-adrenergic receptor. PLoS ONE8 (5), e63622 (2013).
  • Resende RR , AdhikariA. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun. Signal.7, 20 (2009).
  • Ebrahimkhani MR , OakleyF, MurphyLBet al. Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease. Nat. Med.17 (12), 1668–1673 (2011).
  • Castorina A , GiuntaS, AgataVD. Protective effect of the dopamine D3 receptor agonist (7-OH-PIPAT) against apoptosis in malignant peripheral nerve sheath tumor (MPNST) cells. Int. J. Oncol.37 (4), 927–934 (2010).
  • Ajeawung NF , MaltaisR, JonesC, PoirierD, KamnasaranD. Viability screen on pediatric low grade glioma cell lines unveils a novel anti-cancer drug of the steroid biosynthesis inhibitor family. Cancer Lett.330 (1), 96–105 (2013).
  • Jehle J , SchweizerPA, KatusHA, ThomasD. Novel roles for hERG K(+) channels in cell proliferation and apoptosis. Cell Death Dis.2 (8), e193 (2011).
  • Blanco-Aparicio C , CarneroA. Pim kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochem. Pharmacol.85 (5), 629–643 (2013).
  • Ferretti M , FabbianoC, Di BariMet al. M2 receptor activation inhibits cell cycle progression and survival in human glioblastoma cells. J. Cell. Mol. Med.17 (4), 552–566 (2013).
  • Poirier D . New cancer drugs targeting the biosynthesis of estrogens and androgens. Drug Dev. Res.69 (6), 304–318 (2008).
  • Li Z , YangY, MingM, LiuB. Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem. Biophys. Res. Commun.414 (1), 5–8 (2011).
  • Smethurst DGJ , DawesIW, GourlayCW. Actin – a biosensor that determines cell fate in yeasts. FEMS Yeast Res.14, 89–95 (2013).
  • Munnamalai V , WeaverCJ, WeisheitCEet al. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones. J. Neurochem.130 (4), 526–540 (2014).
  • Jaquet V , ScapozzaL, ClarkRA, KrauseK-H, LambethJD. Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid. Redox Signal.11 (10), 2535–2552 (2009).
  • Wang Z , WeiX, ZhangYet al. NADPH oxidase-derived ROS contributes to upregulation of TRPC6 expression in puromycin aminonucleoside-induced podocyte injury. Cell. Physiol. Biochem. (24), 619–626 (2009).
  • Uesono Y , ArakiT, Toh-EA. Local anesthetics, antipsychotic phenothiazines, and cationic surfactants shut down intracellular reactions through membrane perturbation in yeast. Biosci., Biotechnol., Biochem.72 (11), 2884–2894 (2014).
  • Li G , ZhouT, LiuLet al. Ezrin dephosphorylation/downregulation contributes to ursolic acid-mediated cell death in human leukemia cells. Blood Cancer J.3, e108 (2013).
  • Ogura H , TsukumoY, SugimotoH, IgarashiM, NagaiK, KataokaT. ERK and p38 MAP kinase are involved in downregulation of cell surface TNF receptor 1 induced by acetoxycycloheximide. Int. Immunopharmacol.8 (6), 922–926 (2008).
  • Shan J , XuanY, ZhengS, DongQ, ZhangS. Ursolic acid inhibits proliferation and induces apoptosis of HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway. J. Zhejiang Univ. Sci. B.10 (9), 668–674 (2009).
  • Han W , LoH-W. Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Lett.318 (2), 124–134 (2012).
  • Guo C , StarkGR. FER tyrosine kinase (FER) overexpression mediates resistance to quinacrine through EGF-dependent activation of NF- κ B. Proc. Natl Acad. Sci. USA108 (19), 7968–7973 (2011).
  • Lee H , HuM, ReillyRM, AllenC. Apoptotic epidermal growth factor (EGF)-conjugated block copolymer micelles as a nanotechnology platform for targeted combination therapy. Mol. Pharm.4 (5), 769–781 (2007).
  • Wu Z , WangG, XuSet al. Effects of tetrandrine on glioma cell malignant phenotype via inhibition of ADAM17. Tumor Biol.35 (3), 2205–2210 (2014).
  • Zhang X , TangN, HaddenTJ, RishiAK. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta.1813 (11), 1978–1986 (2011).
  • Guo C , GasparianaV, ZhuangZet al. 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-kappaB and p53 pathways. Oncogene28 (8), 1151–1161 (2009).
  • Yan K-H , YaoC-J, HsiaoC-Het al. Mefloquine exerts anticancer activity in prostate cancer cells via ROS-mediated modulation of Akt, ERK, JNK and AMPK signaling. Oncol. Lett.5 (5), 1541–1545 (2013).
  • Gao N , ChengS, BudhrajaAet al. Ursolic acid induces apoptosis in human leukaemia cells and exhibits anti-leukaemic activity in nude mice through the PKB pathway. Br. J. Pharmacol.165 (6), 1813–1826 (2012).
  • Livshits G , KobielakA, FuchsE. Governing epidermal homeostasis by coupling cell–cell adhesion to integrin and growth factor signaling, proliferation, and apoptosis. Proc. Natl Acad. Sci. USA109 (13), 4886–4891 (2012).
  • Solá S , AranhaMM, RodriguesCMP. Driving apoptosis-relevant proteins toward neural differentiation. Mol. Neurobiol.46 (2), 316–331 (2012).
  • Zhivotovsky B , OrreniusS. Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium50 (3), 211–221 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.