169
Views
0
CrossRef citations to date
0
Altmetric
Review

Adipokines and Their Receptors: Potential New Targets in Cardiovascular Diseases

, &
Pages 139-157 | Published online: 16 Feb 2015

References

  • González-Juanatey JR , Lago PazF, EirasS, Teijeira-FernándezE. Adipocitocinas como nuevos marcadores de la enfermedad cardiovascular. Perspectivas fisiopatológicas y clínicas. Revista Española de Cardiología62 (Suppl. 2), 9–16 (2009).
  • Horwich TB , FonarowGC, HamiltonMA, MaclellanWR, WooMA, TillischJH. The relationship between obesity and mortality in patients with heart failure. J. Am. Coll. Cardiol.38 (3), 789–795 (2001).
  • Goncalves N , Roncon-AlbuquerqueRJr, OliveiraM, Quina-RodriguesC, LourencoAP, Leite-MoreiraAF. A high-calorie diet attenuates cachexia and adipose tissue inflammation in monocrotaline-induced pulmonary hypertensive rats. Rev. Port. Cardiol.29 (3), 391–400 (2010).
  • Lavie CJ , MilaniRV, VenturaHO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol.53 (21), 1925–1932 (2009).
  • Alpert MA , AgrawalH, AggarwalK, KumarSA, KumarA. Heart failure and obesity in adults: pathophysiology, clinical manifestations and management. Curr. Heart Fail. Rep11 (2), 156–165 (2014).
  • Wende AR , YoungME. APpEaLINg therapeutic target for obesity cardiomyopathy?J. Mol. Cell Cardiol.63, 165–168 (2013).
  • Iozzo P . Myocardial, perivascular, and epicardial fat. Diabetes Care34 (Suppl. 2), S371–S379 (2011).
  • Yudkin JS , EringaE, StehouwerCD. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet365 (9473), 1817–1820 (2005).
  • Iacobellis G , BarbaroG. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm. Metab. Res.40 (7), 442–445 (2008).
  • Iacobellis G , WillensHJ. Echocardiographic epicardial fat: a review of research and clinical applications. J. Am. Soc. Echocardiogr.22 (12), 1311–1319; quiz 1417–1318 (2009).
  • Lavie CJ , AlpertMA, ArenaR, MehraMR, MilaniRV, VenturaHO. Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart Fail.1 (2), 93–102 (2013).
  • Oreopoulos A , PadwalR, Kalantar-ZadehK, FonarowGC, NorrisCM, McAlisterFA. Body mass index and mortality in heart failure: a meta-analysis. Am. Heart J.156 (1), 13–22 (2008).
  • O'dowd BF , HeiberM, ChanAet al. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene136 (1–2), 355–360 (1993).
  • Tatemoto K , HosoyaM, HabataYet al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun.251 (2), 471–476 (1998).
  • Habata Y , FujiiR, HosoyaMet al. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim. Biophys. Acta1452 (1), 25–35 (1999).
  • Machura E , ZioraK, ZioraDet al. Serum apelin-12 level is elevated in schoolchildren with atopic asthma. Respir. Med.107 (2), 196–201 (2013).
  • Scimia MC , HurtadoC, RaySet al. APJ acts as a dual receptor in cardiac hypertrophy. Nature488 (7411), 394–398 (2012).
  • Chun HJ , AliZA, KojimaYet al. Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J. Clin. Invest.118 (10), 3343–3354 (2008).
  • Hosoya M , KawamataY, FukusumiSet al. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J. Biol. Chem.275 (28), 21061–21067 (2000).
  • Kawamata Y , HabataY, FukusumiSet al. Molecular properties of apelin: tissue distribution and receptor binding. Biochim. Biophys. Acta1538 (2–3), 162–171 (2001).
  • Kleinz MJ , SkepperJN, DavenportAP. Immunocytochemical localisation of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul. Pept.126 (3), 233–240 (2005).
  • Medhurst AD , JenningsCA, RobbinsMJet al. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J. NeuroChem.84 (5), 1162–1172 (2003).
  • O'carroll AM , SelbyTL, PalkovitsM, LolaitSJ. Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim. Biophys. Acta1492 (1), 72–80 (2000).
  • Boucher J , MasriB, DaviaudDet al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology146 (4), 1764–1771 (2005).
  • Ceylan-Isik AF , KandadiMR, XuXet al. Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J. Mol. Cell Cardiol.63, 4–13 (2013).
  • Ba HJ , ChenHS, SuZet al. Associations between serum apelin-12 levels and obesity-related markers in Chinese children. PLoS One9 (1), e86577 (2014).
  • Falcao-PiRes I , Leite-MoreiraAF. Apelin: a novel neurohumoral modulator of the cardiovascular system. Pathophysiologic importance and potential use as a therapeutic target. Rev. Port. Cardiol.24 (10), 1263–1276 (2005).
  • Karadag S , OzturkS, GursuMet al. The relationship between apelin and cardiac parameters in patients on peritoneal dialysis: is there a new cardiac marker? BMC Nephrol 15 (1), 18 (2014).
  • Falcao-PiRes I , Ladeiras-LopesR, Leite-MoreiraAF. The apelinergic system: a promising therapeutic target. Expert Opin. Ther. Targets14 (6), 633–645 (2010).
  • Foldes G , HorkayF, SzokodiIet al. Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochem. Biophys. Res. Commun.308 (3), 480–485 (2003).
  • Ladeiras-Lopes R , Ferreira-MartinsJ, Leite-MoreiraAF. The apelinergic system: the role played in human physiology and pathology and potential therapeutic applications. Arq. Bras. Cardiol.90 (5), 343–349 (2008).
  • Ishida J , HashimotoT, HashimotoYet al. Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressurein vivo. J. Biol. Chem.279 (25), 26274–26279 (2004).
  • Katugampola SD , MaguireJJ, MatthewsonSR, DavenportAP. [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br. J. Pharmacol.132 (6), 1255–1260 (2001).
  • Andersen CU , HilbergO, MellemkjaerS, Nielsen-KudskJE, SimonsenU. Apelin and pulmonary hypertension. Pulm. Circ.1 (3), 334–346 (2011).
  • Zhang J , RenCX, QiYFet al. Exercise training promotes expression of apelin and APJ of cardiovascular tissues in spontaneously hypertensive rats. Life Sci.79 (12), 1153–1159 (2006).
  • Barnes GD , AlamS, CarterGet al. Sustained cardiovascular actions of APJ agonism during renin-angiotensin system activation and in patients with heart failure. Circ. Heart Fail.6 (3), 482–491 (2013).
  • Vickers C , HalesP, KaushikVet al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem.277 (17), 14838–14843 (2002).
  • Sato T , SuzukiT, WatanabeHet al. Apelin is a positive regulator of ACE2 in failing hearts. J. Clin. Invest.123 (12), 5203–5211 (2013).
  • Kazemi-Bajestani SM , PatelVB, WangW, OuditGY. Targeting the ACE2 and apelin pathways are novel therapies for heart failure: opportunities and challenges. Cardiol. Res. Pract.2012, 823193 (2012).
  • Reaux A , De MotaN, SkultetyovaIet al. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J. NeuroChem.77 (4), 1085–1096 (2001).
  • Szokodi I , TaviP, FoldesGet al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ. Res.91 (5), 434–440 (2002).
  • Ashley EA , PowersJ, ChenMet al. The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc. Res.65 (1), 73–82 (2005).
  • Dai T , Ramirez-CorreaG, GaoWD. Apelin increases contractility in failing cardiac muscle. Eur. J. Pharmacol.553 (1–3), 222–228 (2006).
  • Jia YX , PanCS, ZhangJet al. Apelin protects myocardial injury induced by isoproterenol in rats. Regul. Pept.133 (1–3), 147–154 (2006).
  • Falcao-PiRes I , GoncalvesN, Henriques-CoelhoT, Moreira-GoncalvesD, Roncon-AlbuquerqueRJr, Leite-MoreiraAF. Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol.296 (6), H2007–H2014 (2009).
  • Chen MM , AshleyEA, DengDXet al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation108 (12), 1432–1439 (2003).
  • Chong KS , GardnerRS, MortonJJ, AshleyEA, McdonaghTA. Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure. Eur. J. Heart Fail.8 (4), 355–360 (2006).
  • Goetze JP , RehfeldJF, CarlsenJet al. Apelin: a new plasma marker of cardiopulmonary disease. Regul. Pept.133 (1–3), 134–138 (2006).
  • Miettinen KH , MaggaJ, VuolteenahoOet al. Utility of plasma apelin and other indices of cardiac dysfunction in the clinical assessment of patients with dilated cardiomyopathy. Regul. Pept.140 (3), 178–184 (2007).
  • Ashley EA , ChenM, QuertermousTet al. Diagnostic markers and pharmacological targets in heart failure and related reagents and methods of use thereof US20050152836 A1(US 10/850,941), (2005). www.google.com/patents/WO2005029066A2?cl=en.
  • Falcao-Pires I , GoncalvesN, GavinaCet al. Correlation between plasma levels of apelin and myocardial hypertrophy in rats and humans: possible target for treatment? Expert Opin. Ther. Targets 14 (3), 231–241 (2010).
  • Ronkainen VP , RonkainenJJ, HanninenSLet al. Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J.21 (8), 1821–1830 (2007).
  • Pchejetski D , FoussalC, AlfaranoCet al. Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur. Heart J.33 (18), 2360–2369 (2012).
  • Simpkin JC , YellonDM, DavidsonSM, LimSY, WynneAM, SmithCC. Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic Res. Cardiol.102 (6), 518–528 (2007).
  • Tao J , ZhuW, LiYet al. Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am. J. Physiol. Heart Circ. Physiol.301 (4), H1471–H1486 (2011).
  • Zeng XJ , ZhangLK, WangHX, LuLQ, MaLQ, TangCS. Apelin protects heart against ischemia/reperfusion injury in rat. Peptides30 (6), 1144–1152 (2009).
  • Arita Y , KiharaS, OuchiNet al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun.257 (1), 79–83 (1999).
  • Mattu HS , RandevaHS. Role of adipokines in cardiovascular disease. J. Endocrinol.216 (1), T17–36 (2013).
  • Fruebis J , TsaoTS, JavorschiSet al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA98 (4), 2005–2010 (2001).
  • Tsao TS , MurreyHE, HugC, LeeDH, LodishHF. Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J. Biol. Chem.277 (33), 29359–29362 (2002).
  • Tsao TS , TomasE, MurreyHEet al. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J. Biol. Chem.278 (50), 50810–50817 (2003).
  • Pajvani UB , DuX, CombsTPet al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem.278 (11), 9073–9085 (2003).
  • Yamauchi T , KamonJ, WakiHet al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J. Biol. Chem.278 (4), 2461–2468 (2003).
  • Hug C , WangJ, AhmadNS, BoganJS, TsaoTS, LodishHF. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl Acad. Sci. USA101 (28), 10308–10313 (2004).
  • Ding G , QinQ, HeNet al. Adiponectin and its receptors are expressed in adult ventricular cardiomyocytes and upregulated by activation of peroxisome proliferator-activated receptor gamma. J. Mol. Cell Cardiol.43 (1), 73–84 (2007).
  • Fujioka D , KawabataK, SaitoYet al. Role of adiponectin receptors in endothelin-induced cellular hypertrophy in cultured cardiomyocytes and their expression in infarcted heart. Am. J. Physiol. Heart Circ. Physiol.290 (6), H2409–H2416 (2006).
  • Pineiro R , IglesiasMJ, GallegoRet al. Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett579 (23), 5163–5169 (2005).
  • Van De Voorde J , PauwelsB, BoydensC, DecaluweK. Adipocytokines in relation to cardiovascular disease. Metabolism62 (11), 1513–1521 (2013).
  • Yamauchi T , KamonJ, WakiHet al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med.7 (8), 941–946 (2001).
  • Chow WS , CheungBM, TsoAWet al. Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study. Hypertension49 (6), 1455–1461 (2007).
  • Shibata R , OuchiN, ItoMet al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat. Med.10 (12), 1384–1389 (2004).
  • Cnop M , HavelPJ, UtzschneiderKMet al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia46 (4), 459–469 (2003).
  • Falcao-PiRes I , Castro-ChavesP, Miranda-SilvaD, LourencoAP, Leite-MoreiraAF. Physiological, pathological and potential therapeutic roles of adipokines. Drug Discov. Today17 (15–16), 880–889 (2012).
  • Pilz S , MaerzW, WeihrauchGet al. Adiponectin serum concentrations in men with coronary artery disease: the LUdwigshafen RIsk and Cardiovascular Health (LURIC) study. Clin. Chim. Acta364 (1–2), 251–255 (2006).
  • Shimada K , MiyazakiT, DaidaH. Adiponectin and atherosclerotic disease. Clin. Chim. Acta344 (1–2), 1–12 (2004).
  • Ouchi N , KiharaS, AritaYet al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation100 (25), 2473–2476 (1999).
  • Ouchi N , KiharaS, AritaYet al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation103 (8), 1057–1063 (2001).
  • Ouedraogo R , GongY, BerzinsBet al. Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo. J. Clin. Invest.117 (6), 1718–1726 (2007).
  • Bruun JM , LihnAS, VerdichCet al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am. J. Physiol. Endocrinol. Metab.285 (3), E527–E533 (2003).
  • Arita Y , KiharaS, OuchiNet al. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation105 (24), 2893–2898 (2002).
  • Hopkins TA , OuchiN, ShibataR, WalshK. Adiponectin actions in the cardiovascular system. Cardiovasc. Res.74 (1), 11–18 (2007).
  • Kostopoulos CG , SpiroglouSG, VarakisJN, ApostolakisE, PapadakiHH. Adiponectin/T-cadherin and apelin/APJ expression in human arteries and periadventitial fat: implication of local adipokine signaling in atherosclerosis?Cardiovasc. Pathol.23 (3), 131–138 (2014).
  • Shibata R , IzumiyaY, SatoKet al. Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J. Mol. Cell Cardiol.42 (6), 1065–1074 (2007).
  • Hong SJ , ParkCG, SeoHS, OhDJ, RoYM. Associations among plasma adiponectin, hypertension, left ventricular diastolic function and left ventricular mass index. Blood Press.13 (4), 236–242 (2004).
  • Takahashi T , YuF, SaegusaSet al. Impaired expression of cardiac adiponectin in leptin-deficient mice with viral myocarditis. Int. Heart J.47 (1), 107–123 (2006).
  • Eiras S , Teijeira-FernandezE, ShamagianLG, FernandezAL, Vazquez-BoqueteA, Gonzalez-JuanateyJR. Extension of coronary artery disease is associated with increased IL-6 and decreased adiponectin gene expression in epicardial adipose tissue. Cytokine43 (2), 174–180 (2008).
  • Teijeira-Fernandez E , EirasS, Grigorian-ShamagianL, FernandezA, AdrioB, Gonzalez-JuanateyJR. Epicardial adipose tissue expression of adiponectin is lower in patients with hypertension. J. Hum. Hypertens.22 (12), 856–863 (2008).
  • Ohashi K , KiharaS, OuchiNet al. Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension47 (6), 1108–1116 (2006).
  • Tao L , GaoE, JiaoXet al. Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation115 (11), 1408–1416 (2007).
  • Zhang Y , ProencaR, MaffeiM, BaroneM, LeopoldL, FriedmanJM. Positional cloning of the mouse obese gene and its human homologue. Nature372 (6505), 425–432 (1994).
  • Wellhoener P , Fruehwald-SchultesB, KernWet al. Glucose metabolism raTher. than insulin is a main determinant of leptin secretion in humans. J. Clin. Endocrinol. Metab.85 (3), 1267–1271 (2000).
  • Saladin R , De VosP, Guerre-MilloMet al. Transient increase in obese gene expression after food intake or insulin administration. Nature377 (6549), 527–529 (1995).
  • Escobar-Morreale HF , Escobar Del ReyF, Morreale De EscobarG. Thyroid hormones influence serum leptin concentrations in the rat. Endocrinology138 (10), 4485–4488 (1997).
  • Bornstein SR , LicinioJ, TauchnitzRet al. Plasma leptin levels are increased in survivors of acute sepsis: associated loss of diurnal rhythm, in cortisol and leptin secretion. J. Clin. Endocrinol. Metab.83 (1), 280–283 (1998).
  • Tartaglia LA , DembskiM, WengXet al. Identification and expression cloning of a leptin receptor, OB-R. Cell83 (7), 1263–1271 (1995).
  • Beltowski J . Leptin and atherosclerosis. Atherosclerosis189 (1), 47–60 (2006).
  • Oral EA , SimhaV, RuizEet al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med.346 (8), 570–578 (2002).
  • Considine RV , SinhaMK, HeimanMLet al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med.334 (5), 292–295 (1996).
  • Myers MG Jr , HeymsfieldSB, HaftCet al. Challenges and opportunities of defining clinical leptin resistance. Cell Metab.15 (2), 150–156 (2012).
  • El-Haschimi K , PierrozDD, HilemanSM, BjorbaekC, FlierJS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest.105 (12), 1827–1832 (2000).
  • Karmazyn M , PurdhamDM, RajapurohitamV, ZeidanA. Leptin as a cardiac hypertrophic factor: a potential target for therapeutics. Trends Cardiovasc. Med.17 (6), 206–211 (2007).
  • Lago F , DieguezC, Gomez-ReinoJ, GualilloO. The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev.18 (3–4), 313–325 (2007).
  • Quehenberger P , ExnerM, Sunder-PlassmannRet al. Leptin induces endothelin-1 in endothelial cells in vitro. Circ. Res.90 (6), 711–718 (2002).
  • Zeidan A , PurdhamDM, RajapurohitamV, JavadovS, ChakrabartiS, KarmazynM. Leptin induces vascular smooth muscle cell hypertrophy through angiotensin II- and endothelin-1-dependent mechanisms and mediates stretch-induced hypertrophy. J. Pharmacol. Exp. Ther.315 (3), 1075–1084 (2005).
  • Howard JK , LordGM, MatareseGet al. Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J. Clin. Invest.104 (8), 1051–1059 (1999).
  • Reyes M , QuintanillaC, BurrowsR, BlancoE, CifuentesM, GahaganS. Obesity is associated with acute inflammation in a sample of adolescents. Pediatr. Diabetes doi:10.1111/pedi.12129 (2014) ( Epub ahead of print).
  • Pan H , GuoJ, SuZ. Advances in understanding the interrelations between leptin resistance and obesity. Physiol. Behav.30, 157–169 (2014).
  • Smith CC , MocanuMM, DavidsonSM, WynneAM, SimpkinJC, YellonDM. Leptin, the obesity-associated hormone, exhibits direct cardioprotective effects. Br. J. Pharmacol.149 (1), 5–13 (2006).
  • Shek EW , BrandsMW, HallJE. Chronic leptin infusion increases arterial pressure. Hypertension31 (1 Pt 2), 409–414 (1998).
  • Ozata M , OzdemirIC, LicinioJ. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J. Clin. Endocrinol. Metab.84 (10), 3686–3695 (1999).
  • Rodriguez A , FruhbeckG, Gomez-AmbrosiJet al. The inhibitory effect of leptin on angiotensin II-induced vasoconstriction is blunted in spontaneously hypertensive rats. J. Hypertens.24 (8), 1589–1597 (2006).
  • Hare JM , StamlerJS. NO/redox disequilibrium in the failing heart and cardiovascular system. J. Clin. Invest.115 (3), 509–517 (2005).
  • Dong F , ZhangX, RenJ. Leptin regulates cardiomyocyte contractile function through endothelin-1 receptor-NADPH oxidase pathway. Hypertension47 (2), 222–229 (2006).
  • Ren J , ZhuBH, RellingDP, EsbergLB, Ceylan-IsikAF. High-fat diet-induced obesity leads to resistance to leptin-induced cardiomyocyte contractile response. Obesity (Silver Spring)16 (11), 2417–2423 (2008).
  • Ricci E , SmallwoodS, ChouabeCet al. Electrophysiological characterization of left ventricular myocytes from obese Sprague-Dawley rat. Obesity (Silver Spring)14 (5), 778–786 (2006).
  • Madani S , De GirolamoS, MunozDM, LiRK, SweeneyG. Direct effects of leptin on size and extracellular matrix components of human pediatric ventricular myocytes. Cardiovasc. Res.69 (3), 716–725 (2006).
  • Steppan CM , BaileyST, BhatSet al. The hormone resistin links obesity to diabetes. Nature409 (6818), 307–312 (2001).
  • Barnes KM , MinerJL. Role of resistin in insulin sensitivity in rodents and humans. Curr. Protein Pept. Sci.10 (1), 96–107 (2009).
  • Kunnari A , UkkolaO, PaivansaloM, KesaniemiYA. High plasma resistin level is associated with enhanced highly sensitive C-reactive protein and leukocytes. J. Clin. Endocrinol. Metab.91 (7), 2755–2760 (2006).
  • Bokarewa M , NagaevI, DahlbergL, SmithU, TarkowskiA. Resistin, an adipokine with potent proinflammatory properties. J. Immunol.174 (9), 5789–5795 (2005).
  • Silswal N , SinghAK, ArunaB, MukhopadhyayS, GhoshS, EhteshamNZ. Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem. Biophys. Res. Commun.334 (4), 1092–1101 (2005).
  • Calabro P , SamudioI, WillersonJT, YehET. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation110 (21), 3335–3340 (2004).
  • Mu H , OhashiR, YanSet al. Adipokine resistin promotes in vitro angiogenesis of human endothelial cells. Cardiovasc. Res.70 (1), 146–157 (2006).
  • Rae C , RobertsonSA, TaylorJM, GrahamA. Resistin induces lipolysis and re-esterification of triacylglycerol stores, and increases cholesteryl ester deposition, in human macrophages. FEBS Lett.581 (25), 4877–4883 (2007).
  • Calabro P , CirilloP, LimongelliGet al. Tissue factor is induced by resistin in human coronary artery endothelial cells by the NF-kB-dependent pathway. J. Vasc. Res.48 (1), 59–66 (2011).
  • Chen C , JiangJ, LuJMet al. Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am. J. Physiol. Heart Circ. Physiol.299 (1), H193–H201 (2010).
  • Robertson SA , RaeCJ, GrahamA. Induction of angiogenesis by murine resistin: putative role of PI3-kinase and NO-dependent pathways. Regul. Pept.152 (1–3), 41–47 (2009).
  • Chemaly ER , HadriL, ZhangSet al. Long-term in vivo resistin overexpression induces myocardial dysfunction and remodeling in rats. J. Mol. Cell Cardiol.51 (2), 144–155 (2011).
  • Lubos E , MessowCM, SchnabelRet al. Resistin, acute coronary syndrome and prognosis results from the AtheroGene study. Atherosclerosis193 (1), 121–128 (2007).
  • Fukuhara A , MatsudaM, NishizawaMet al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science307 (5708), 426–430 (2005).
  • Samal B , SunY, StearnsG, XieC, SuggsS, McNieceI. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell Biol.14 (2), 1431–1437 (1994).
  • Rongvaux A , SheaRJ, MulksMHet al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol.32 (11), 3225–3234 (2002).
  • Haider DG , HolzerG, SchallerGet al. The adipokine visfatin is markedly elevated in obese children. J. Pediatr. Gastroenterol. Nutr.43 (4), 548–549 (2006).
  • Haider DG , SchindlerK, SchallerG, PragerG, WolztM, LudvikB. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J. Clin. Endocrinol. Metab.91 (4), 1578–1581 (2006).
  • Retnakaran R , YounBS, LiuYet al. Correlation of circulating full-length visfatin (PBEF/NAMPT) with metabolic parameters in subjects with and without diabetes: a cross-sectional study. Clin. Endocrinol. (Oxford)69 (6), 885–893 (2008).
  • Hausenloy DJ . Drug discovery possibilities from visfatin cardioprotection?Curr. Opin. Pharmacol.9 (2), 202–207 (2009).
  • Chan TF , ChenYL, LeeCHet al. Decreased plasma visfatin concentrations in women with gestational diabetes mellitus. J. Soc. Gynecol. Investig.13 (5), 364–367 (2006).
  • Pagano C , PilonC, OlivieriMet al. Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans. J. Clin. Endocrinol. Metab.91 (8), 3165–3170 (2006).
  • Adeghate E . Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr. Med. Chem.15 (18), 1851–1862 (2008).
  • Xie H , TangSY, LuoXHet al. Insulin-like effects of visfatin on human osteoblasts. Calcif. Tissue Int.80 (3), 201–210 (2007).
  • Dahl TB , YndestadA, SkjellandMet al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation115 (8), 972–980 (2007).
  • Takebayashi K , SuetsuguM, WakabayashiS, AsoY, InukaiT. Association between plasma visfatin and vascular endothelial function in patients with type 2 diabetes mellitus. Metabolism56 (4), 451–458 (2007).
  • Adya R , TanBK, ChenJ, RandevaHS. Pre-B cell colony enhancing factor (PBEF)/visfatin induces secretion of MCP-1 in human endothelial cells: role in visfatin-induced angiogenesis. Atherosclerosis205 (1), 113–119 (2009).
  • Kim SR , BaeSK, ChoiKSet al. Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase 1/2. Biochem. Biophys. Res. Commun.357 (1), 150–156 (2007).
  • Park JW , KimWH, ShinSHet al. Visfatin exerts angiogenic effects on human umbilical vein endothelial cells through the mTOR signaling pathway. Biochim. Biophys. Acta1813 (5), 763–771 (2011).
  • Pillai VB , SundaresanNR, KimGet al. Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. Am. J. Physiol. Heart Circ. Physiol.304 (3), H415–H426 (2013).
  • Yu XY , QiaoSB, GuanHS, LiuSW, MengXM. Effects of visfatin on proliferation and collagen synthesis in rat cardiac fibroblasts. Horm. Metab. Res.42 (7), 507–513 (2010).
  • Lim SY , DavidsonSM, ParamanathanAJ, SmithCC, YellonDM, HausenloyDJ. The novel adipocytokine visfatin exerts direct cardioprotective effects. J. Cell Mol. Med.12 (4), 1395–1403 (2008).
  • Hertzel AV , BernlohrDA. The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol. Metab.11 (5), 175–180 (2000).
  • Agra RM , Fernandez-TrasancosA, SierraJ, Gonzalez-JuanateyJR, EirasS. Differential association of S100A9, an inflammatory marker, and p53, a cell cycle marker, expression with epicardial adipocyte size in patients with cardiovascular disease. Inflammation37 (5), 1504–1512 (2014).
  • Hotamisligil GS , JohnsonRS, DistelRJ, EllisR, PapaioannouVE, SpiegelmanBM. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science274 (5291), 1377–1379 (1996).
  • Uysal KT , SchejaL, WiesbrockSM, Bonner-WeirS, HotamisligilGS. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology141 (9), 3388–3396 (2000).
  • Furuhashi M , TuncmanG, GorgunCZet al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature447 (7147), 959–965 (2007).
  • Tuncman G , ErbayE, HomXet al. A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc. Natl Acad. Sci. USA103 (18), 6970–6975 (2006).
  • Lamounier-Zepter V , LookC, AlvarezJet al. Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction: a new link between obesity and heart disease. Circ. Res.105 (4), 326–334 (2009).
  • Donato R , CannonBR, SorciGet al. Functions of S100 proteins. Curr. Mol. Med.13 (1), 24–57 (2013).
  • Tsoporis JN , MarksA, HaddadA, DawoodF, LiuPP, ParkerTG. S100B expression modulates left ventricular remodeling after myocardial infarction in mice. Circulation111 (5), 598–606 (2005).
  • Volkers M , RohdeD, GoodmanC, MostP. S100A1: a regulator of striated muscle sarcoplasmic reticulum Ca2+ handling, sarcomeric, and mitochondrial function. J. BioMed. Biotechnol.2010, 178614 (2010).
  • Yamaguchi N , ChakrabortyA, HuangTQet al. Cardiac hypertrophy associated with impaired regulation of cardiac ryanodine receptor by calmodulin and S100A1. Am. J. Physiol. Heart Circ. Physiol.305 (1), H86–H94 (2013).
  • Most P , SeifertH, GaoEet al. Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation114 (12), 1258–1268 (2006).
  • Hernandez-Ochoa EO , ProsserBL, WrightNT, ContrerasM, WeberDJ, SchneiderMF. Augmentation of Cav1 channel current and action potential duration after uptake of S100A1 in sympathetic ganglion neurons. Am. J. Physiol. Cell Physiol.297 (4), C955–C970 (2009).
  • Most P , RaakeP, WeberC, KatusHA, PlegerST. S100A1 gene therapy in small and large animals. Methods Mol. Biol.963, 407–420 (2013).
  • Wang W , AspML, Guerrero-SernaG, MetzgerJM. Differential effects of S100 proteins A2 and A6 on cardiac Ca cycling and contractile performance. J. Mol. Cell Cardiol.72C, 117–125 (2014).
  • Tamaki Y , IwanagaY, NiizumaSet al. Metastasis-associated protein, S100A4 mediates cardiac fibrosis potentially through the modulation of p53 in cardiac fibroblasts. J. Mol. Cell Cardiol.57, 72–81 (2013).
  • Wu Y , LiY, ZhangCet al. S100a8/a9 released by CD11b+Gr1+ neutrophils activates cardiac fibroblasts to initiate angiotensin II-induced cardiac inflammation and injury. Hypertension, 63 (6), 1241–1250 (2014).
  • Ehlermann P , EggersK, BierhausAet al. Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products. Cardiovasc. Diabetol.5, 6 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.