116
Views
0
CrossRef citations to date
0
Altmetric
Review

4-Isoxazolyl-1,4-Dihydropyridines: A Tale of Two Scaffolds

&
Pages 923-943 | Published online: 25 Jun 2014

References

  • Silverman RB , Organic Chemistry of Drug Design and Drug Action (Second Edition).Academic Press, NY, USA (2004).
  • Brown N . Bioisosteres in Medicinal Chemistry, Methods and Principles in Medicinal Chemistry (Volume 54).Wiley-VCH, Weinheim, Germany (2012).
  • Evans B , RittleK, HirshfieldtJbet al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem.31 (12), 2235–2246 (1988).
  • Bemis G , MurckoM. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem.39 (15), 2887–2893 (1996).
  • Bemis G , MurckoM. Properties of known drugs. 2. Side chains. J. Med. Chem.42 (25), 5095–5099 (1999).
  • Kelekota J , RothF. Chemical substructures that enrich for biological activity. Bioinformatics24 (21), 2518–2525 (2008).
  • Hajduk P , BuresM, PraestgaardJ, FesikS. Privileged molecules for protein binding identified from NMR-bases screening. J. Med. Chem.43 (18), 3443–3447 (2000).
  • Klabunde T , HesslerG. Drug design strategies for targeting G-protein-coupled receptors. Chembiochem.3 (10), 928–944 (2002).
  • Matter H , BaringhausKH, NaumannT, KlabundeT, PirardB. Computational approaches towards the rational design of drug-like compound libraries. Comb. Chem. High Throughput Screen.4 (6), 4534–75 (2001).
  • Brown N . Scaffold Hopping in Medicinal Chemistry, Methods and Principles in Medicinal Chemistry (Volume 58).Wiley-VCH, Weinheim, Germany (2013).
  • Boehm H-J . Scaffold hopping. Drug Discov. Today Technol.1 (3), 2172–24 (2004).
  • Welsch M , SnyderS, StockwellB. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol.14 (3), 347–361 (2010).
  • Triggle J . 1,4-dihydropyridines as calcium channel ligands and privileged structures. Cell Mol. Neurobiol.23 (3), 293–303 (2003).
  • Jacobson K .; KimY, KingF. In search of selective P2 receptor ligands: interaction of dihydropyridine derivatives at recombinant rat P2X2 receptors. J. Auton. Nerv. Syst.81 (3), 152–157 (2000).
  • Pevarello P , AmiciR, BrascaMG, VillaM, VarasiM. Recent applications of isoxazole ring in medicinal chemistry. Targets Heterocycl. Syst.3, 301 (1999).
  • Kubinyi H, Muller G . Chemogenomics in Drug Discovery: A Medicinal Chemistry Perspective.Wiley, Weinheim, Germany (2004).
  • Claisen L , LowmanO. Zur Kenntniss des Benzoylacetones. Chem. Ber.21, 1149 (1888).
  • Hantsch A , Ueber die Einwirkung des Natriums auf auf Isobuttersaureather. Justus Liebigs Ann. Chem.1, 249 (1888).
  • Baumann M , BaxendaleIR, LeySV, NikbinN. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem.7, 442–495 (2011).
  • Kochetkov NK , SokolovSD. Chemistry of heterocyclic compounds: isoxazoles, Part 1. Adv. Het. Chem.49 (2), 365 (1963).
  • Wakefield BJ , WrightDJ. Adv. Het. Chem.25, 147 (1979).
  • Lang SA , LinYI. Comprehensive Heterocyclic Chemistry.PottsKT (Ed). Pergamon Press, NY, USA, 6, 1 (1984).
  • Grunanger P , Vita-FinziP. Isoxazoles.John Wiley and Sons Inc., NY, USA (1990).
  • Pinho e Melo TMVD . Recent advances on the synthesis and reactivity of isoxazoles. Current Org. Chem.9 (10), 9259–58 (2005).
  • Natale NR , MirzaeiYR. The lateral metalation of isoxazoles. A review. Org. Prep. Proced. Int.25 (5), 515–556 (1993).
  • Hantzsch A . Justus Liebigs. Ann. Chemie.215, 1–82 (1882).
  • Eisner U , KuthanJ. Chemistry of dihydropyridines. Chem. Rev.72 (1), 1–42 (1972).
  • Stout DM , MeyersAI. Recent advances in the chemistry of dihydropyridines. Chem. Rev.82 (2), 223–243 (1982).
  • Triggle DJ . The 1,4-dihydropyridine nucleus: a pharmacophoric template. MiniRev. Med. Chem.3 (3), 166–175 (2003).
  • Zamponi G . Voltage-Gated Calcium Channels.Landes Bioscience, NY, USA (2005).
  • Triggle DJ , LangsDA, Janis, RA. Ca+2 channel ligands: structure-function relationship of the 1,4-dihydropyridines. Med. Res. Rev.9 (2), 123–180 (1989).
  • Natale NR . Learning from the Hantzsch synthesis, Chem. Innov.30 (11), 22–28 (2000).
  • Nogae I , KohnoK, GottesmanMet al. Analysis of structural features of dihydropyridine analogs needed to reverse multidrug resistance and to inhibit photoaffinity labeling of P-glycoprotein. Biochem. Pharmacol.38 (3), 519–527 (1989).
  • Gottesman M , FojoT, BatesSE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer2 (1), 48–58 (2002).
  • Gillet JP , GottesmanM. Mechanisms of multi-drug resistance in cancer. In: Multi-Drug Resistance in Cancer.ZhouJ (Ed.). Humana Press,, NY, USA, 47–76 (2010).
  • Natale NR , QuincyDA. Neutral dichromate oxidations. Preparation and utility of isoxazole aldehydes. Synth. Commun.13, 817–822 (1983).
  • Shafu B , AminiM, AkbarzadehT, ShafieeA. Synthesis and antitubercular activity of N3, N5-diaryl14--(5-arylisoxazol-3-yl)-1,4-dihydropyridine-3,5-dicarboxamide. J. Sci. I. R. Iran19, 323–328 (2008).
  • Daryabari N , AkbarzadehT, AminaM, MiriR, MirkhaniH, ShafieeA. Synthesis and calcium channel antagonist activities of new derivatives of dialkyl 1,4-dihydro-2,6-dimethyl-4-(5-phenylisoxazol-3-yl)pyridine-3,5-dicarboxylates. J. Iran Chem. Soc.4 (1), 30–36 (2007).
  • Schauer CK , AndersonOP, Quincy, DA, NataleNR. Structure of 3,5-dicarboethoxy-2,6-dimethyl-4-(3’-phenyl-5’methyl-isoxazol-4’-yl)-1,4-dihydropyridine, A calcium antagonist. Acta Crystallogr. Sect. C Cryst. Struct. Commun.C42, 884–886 (1986)
  • Knerr GD , QuincyDA, McKennaJI, NataleNR. The mass spectral fragmentation of isoxazolyl-dihydropyridines. J. Heterocycl. Chem.24, 1429–1433 (1987).
  • McKenna JI , SchlicksuppL, NataleNR, MaryanoffBE, FlaimSF, Willett, RD. Cardioactivity and solid state structure of two 4-isoxazolyl-dihydropyridines related to the 4- aryldihydropyridine calcium channel blockers. J. Med. Chem.31 (2), 473–476 (1988).
  • Kovacic P , EdwardsWD, NataleNR, SridharR, KiserP. Structure calculations on calcium channel drugs: is electron transfer involved mechanistically?Chem. Biol. Interact.75 (1), 61–70 (1990).
  • Natale NR , TriggleDJ, PalmerRB, LeflerBJ, EdwardsWD. 4-Isoxazolyl-dihydropyridines: biological, theoretical and structural studies. J. Med. Chem.33 (8), 22552–259 (1990).
  • Mirzaei YR , SimpsonBM, TriggleDJ, NataleNR. Diastereoselectivity in the lateral metalation and electrophilic quenching of isoxazolyl- oxazolines. J. Org. Chem.57, 6271–6279 (1992).
  • Balasubramaniam TN , NataleNR, Electrophilic quenching of dianions of 4-[5’-sulfonylmethylIsoxazolyl]-1,4-dihydropyridines. A direct route to functionalized Hantzsch esters. Tetrahedron Lett.34 (7), 1099–1102 (1993).
  • Palmer RB , AndroTM, NataleNR, AndersenNH. Conformational preferences and dynamics of 4-isoxazolyl-1,4-dihydropyridine calcium channel antagonists as determined by variable temperature NMR and NOE experiments. Magn. Reson. Chem.34, 495–504 (1996).
  • Natale NR , Rogers, ME, StaplesR, TriggleDJ, RutledgeA. Lipophilic 4-isoxazolyl-1,4-dihydropyridines: synthesis and structure activity relationship. J. Med. Chem.42 (16), 3087–3093 (1999).
  • Natale, NR, NiouCS. A facile synthesis of functionally complex isoxazole derivatives. Tetrahedron Lett.3943–3946 (1984)
  • Natale NR , McKennaJI, NiouCS, BorthM, HopeH. Metalation of isoxazolyloxazolines, a facile route to functionally complex isoxazoles: utility, scope and comparison with dianion methodology. J. Org. Chem.50, 5660–5666 (1985).
  • Niou CS , NataleNR. Synthesis, metalation and electrophilic quenching of alkyl-isoxazole-4-tertiary carboxamides. A critical comparison of three isoxazole lateral metalation methods. Heterocycles24, 4011–4012 (1986).
  • Schlicksupp L , NataleNR. Regioselectivity in lateral deprotonation of an isoxazole carboxamide of (S)-prolinol. conformational correlation by crystal structure, solid state and solution 13C NMR. J. Heterocycl. Chem.24, 1345–1348 (1987).
  • Campana C , MirzaeiJ, KoernerC, GatesC, NataleNR. 3-(1,3-diphenylpropan-2-yl)-4-methyl-6-phenylisoxazolo[3,4-d]pyridazin-7(6H)-one. Acta Cryst.E69, 1680–1681 (2013).
  • Zamponi G , StotzSC, StaplesRJ, RogersTA, NelsonJK, HulubeiV, BlumenfeldA, NataleNR. Unique structure activity relationship of 4-isoxazolyl-1,4-dihydropyridines. J. Med. Chem.46 (1), 87–96 (2003).
  • Hulubei V , SteigerSA, NataleNRet al. 4-Isoxazolyl-1,4-dihydropyridines exhibit binding at the multidrug resistance transporter. Bioorg. Med. Chem.20 (22), 6613–6620 (2012).
  • Szabon-Watola MI , UlatowkiSV, GeorgeKM, Hayes, CD, SteigerSA, NataleNR. Fluorescent probes of the isoxazole-dihydropyridine scaffold: MDR-1 binding and homology model. Bioorg. Med. Chem. Lett.24, 117–121 (2014).
  • Mirzaei Y.R ., SamedT, MajidG, HasanN, LadenE. Facile synthesis of isoxazole-4 and 5-carbaldehydes and their conversion to isoxazolyl-1, 4-dihyropyridines. Org. Prep. Proced. Int.35, 207–214 (2003).
  • Philips B , HartmanG. Preparation and reaction of isomeric formyl-2,1-benzisoxazoles. J. Het. Chem.23 (3), 897–899 (1986).
  • Baldwin J , HalczenkoW, HartmanG, PhilipsB. US4735956A (1988).
  • Hamama WS , IbrahimME, HanafiH. Zoorob efficient regioselective synthesis and potential antitumor evaluation of isoxazolo[5,4-b]pyridines and related annulated compounds. Arch. Pharm. Chem. Life Sci.345, 468–475 (2012).
  • Laurent S , KimD, SmithTW, MarshJD. Inotropic effect, binding properties, and calcium flux effects of the calcium channels agonist CGP 28392 in intact cultured embryonic chick ventricular cells. Circ. Res.56 (5), 676–682 (1985).
  • Taylor M , HimmelsbachR, KornbergB, QuinJ, LunneyE, MichelA. 1,3-dipolar cycloaddition of nitrile oxides with 1,4-dihydropyridines and conformational analysis of isoxazolo[5,4-b]pyridines. J. Org. Chem.54, 5585–5590 (1989).
  • Heaney F . Nitrile oxide/alkyne cycloadditions – a credible platform for synthesis of bioinspired molecules by metal-free molecular clicking. Eur. J. Org. Chem.3043–3058 (2012).
  • Hansen TV , WuP, FolkinVV. One pot copper(I)-catalyzed synthesis of 3,5-disubstituted isoxazoles. J. Org. Chem.70, 7761–7764 (2005).
  • Himo F , SharplessKB, FolkinVVet al. Copper(I) -catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc.127, 210–216 (2005).
  • Maass P , Schulz-GaschT, StahlM, RareyM. Recore: a fast and versatile method for scaffold hopping based on small molecule crystal structure conformations. J. Chem. Inf. Model.47, 390–399 (2007).
  • Furuta T , ShibataS, KadamaI, YamadaK. Cardiovascular effects on FR34235, a new dihydropyridine slow channel blocker, in isolated rabbit myocardium and aorta. J. Cardiovasc. Pharmacol.5 (5), 836–841 (1983).
  • Coburn R , WierzbaM, SutoM, SoloA, TriggleA, TriggleD. 1,4-dihydropyridine antagonist activities at the calcium channel: a quantitative structure-activity relationship approach. J. Med. Chem.31, 2103–2107 (1988).
  • Triggle D . 1,4-dihydropyridine calcium channel ligands: selectivity of action. The role of pharmacokinetics, state-dependent interactions, channel isoforms, and other factors. Drug Devel. Res.58, 5–17 (2003).
  • Triggle D . Calcium channel ligands. Ann. Rev. Pharmacol. Toxicol.27, 347–369 (1987).
  • Mohajeri A , HemmateenejadB, MehdipourA, MiriR. Modeling calcium channel antagonistic activity of dihydropyridine derivatives using ATMS indices analyzed by GA-PLS and PC-GA-PLS. J. Mol. Graph Model.26 (7), 1057–1065 (2008).
  • Mahmoudian M , RichardsW. A conformational distinction between dihydropyridine calcium agonists and antagonists. Chem. Commun.10, 739–741 (1986).
  • Mojarrad J , MiriR, KnausE. Design and synthesis of methyl 27-,7-dihalo-5-phenyl-2-azabicyclo[4.1.0]hepta3-ene-4-carboxylates with calcium channel antagonist activity. Bioorg. Med. Chem.12, 3215–3220 (2004).
  • Bechem M , GoldmannS, GrossRet al. A new type of Ca-channel modulation by a novel class of 1,4 dihydropyridines. Life Sci.60 (2), 1071–1078 (1997).
  • Zheng W , StoltefussJ, GoldmannS, TriggleJ. Pharmacologic and radioligand binding studies of 1,4-dihydropyridines in rat cardiac and vascular preparations: stereoselectivity and voltage dependence of antagonist and activator interactions. Mol. Pharmacol.41 (3), 535–541 (1992).
  • Handrock R , HerzigS. Stereoselectivity of Ca+2 channel block by dihydropyridines: no modulation by the voltage protocol. Eur. J. Pharmacol.309 (3), 317–321 (1996).
  • Mahmoudian M , RichardsW. QSAR of binding of dihydropyridine-type calcium antagonists to their receptor on ileal smooth muscle preparations. J. Pharm. Pharmacol.38 (4), 272–276 (1986).
  • Goldmann S , StoltefussJ, BornL. Determination of the absolute configuration of the active amlodipine enantiomer as (-)-S: a correction. J. Med. Chem.35 (18), 3341–3344 (1995).
  • Goldmann S , StoltefussJ. 1,4-Dihydropyridines: effects of chirality and conformation on the calcium antagonist and agonist activities. Angew. Chem. Int. Ed.30 (12), 1559–1578 (1991).
  • Janis RA , SilverPJ, TriggleDJ. Drug action and cellular calcium regulation. Adv. Drug Res.16, 3095–3091 (1987).
  • Janis RA , TriggleDJ. New developments in calcium ion channel antagonists. J. Med. Chem.26 (6), 775–785 (1983).
  • Rovnyak G , AndersenN, GougoutasJet al. Studies directed towards ascertaining the active conformation of 1,4-dihydropyridine calcium entry blockers. J. Med. Chem.31 (5), 936–944 (1988).
  • Goldman S , GeigerW. Rotational barriers of 4-aryl-1,4-dihydropyridines (Ca antagonists)Angew. Chem. Int. Ed. Engl.23, 301–302 (1984).
  • Berntsson P , CarterR.E. Determination of the conformation of felodipine by 1H NMR spin lattice relaxation time measurements. Acta Pharmaceutica Suec.18, 221–226 (1981).
  • Baldwin JJ , ClaremonDA, LummaPKet al. Diethyl 3, 6-dihydro-2, 4-dimethyl-2, 6-methano-1, 3-benzothiazocine-5, 11-dicarboxylates as calcium entry antagonists: new conformationally restrained analogs of Hantzsch 1, 4-dihydropyridines related to nitrendipine as probes for receptor-site conformation. J. Med. Chem.30 (4), 690–695 (1987).
  • Cosconati S , MarinelliL, LavecchiaA, NovellinoE. Characterizing the 1,4-dihydropyridines binding interactions in the L-type Ca2+ channel: model construction and docking calculations. J. Med. Chem.50 (7), 1504–1513 (2007).
  • Tsuruo T , LidaH, YamashiroM, TsukagoshiS, SakuraiY. Enhancement of vincristine- and adriamycin-induced cytotoxicity by verapamil in P388 leukemia and its sublines resistant to vincristine and adriamycin. Cancer Res.31 (19), 2905–2910 (1983).
  • Miller T , GorganT, DaltonW. P-glycoprotein expression in malignant lymphoma and reversal of clinical drug resistance with chemotherapy plus high-dose verapamil. J. Clin. Oncol.9 (1), 17–24 (1991).
  • Hollt V , KoubaM, DietelM, VogtG. Steroisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein. Biochem. Pharmacol.43 (12), 2601–2608 (1992).
  • Teodori E , DeiS, ScapecchiS, GualtieriF. The medicinal chemistry of multidrug resistance (MDR) reversing drugs. II Farmaco.57 (2), 385–415 (2002).
  • Tolomeo M , GancitanoR, MussoMet al. Effects of R-enantiomer(GR66234A) and L-enantiomer (GR66235A) of telupidine, a newer dihydropyridine derivative, on cell line displaying the multidrug resistant phenotype. Haematologica79 (4), 328–333 (1994).
  • Tasaka S , OhmoriH, GomiNet al. Synthesis and structure-activity analysis of novel dihydropyridine derivatives to overcome multidrug resistance. Bioorg. Med. Chem. Lett.11 (2), 275–277 (2001).
  • Bazargan L , FouladdelS, ShafieeA, AminiM, GhaffariS, AziziE. Evaluation of anticancer effects of newly synthesized dihydropyridine derivatives in comparison to verapamil and doxorubicin on T47D parental and resistant cell lines in vitro. Cell Biol. Toxicol.24 (2), 165–174 (2008).
  • Saponara S , FerraraA, GorelliBet al. 3,5-dibenzoyl-4-(3-phenoxyphenyl)-1,4-dihydro-2,6-dimethylpyridine (DP7): a new multidrug resistance inhibitor devoid of effects on Langendorff-perfused rat heart. Eur. J. Pharmacol.563 (1), 160–163 (2007).
  • Mehdipour A , JavidniaK, HemmateenejadB, AmirghofranZ, MiriR. Dihydropyridine derivatives to overcome atypical multidrug resistance: design, synthesis, QSAR studies, and evaluation of their cytotoxic and pharmacological activities. Chem. Biol. Drug. Des.70 (4), 337–346 (2007).
  • Mohajeri A , HemmateenejadB, MehdipourA, MiriR. Modeling calcium channel antagonistic activity of dihydropyridine derivatives using QTMS indices analyzed by GA-PLS and PC-GA-PLS. J. Mol. Graph Model.26 (7), 1057–1065 (2008)
  • Zhou X , CoburnR, MorrisM. Effects of new 4-aryl-1,4-dihydropyridines and 4-arylpyridines on drug efflux mediated by multidrug resistance-associated protein 1. J. Pharm. Sci.94 (10), 2256–2265 (2005).
  • Zhou X , YangX, WangQ, CoburnR, MorrisM. Effects of dihydropyridines and pyridines on multidrug resistance mediated by breast cancer resistance protein: in vitro and in vivo studies. Drug Metab. Dispos.33 (8), 1220–1228 (2005).
  • Zhou X , CoburnR, MorrisMet al. New 4-aryl-1,4-dihydropyridines and 4-arylpyridines as P-glycoprotein inhibitors. Drug. Metab Dispos.33 (3), 321–328 (2005).
  • Mary A , ZamponiG. Voltage-dependent inactivation of voltage gated calcium channels. Landes Biosci.90 (1), 484–486 (2005).
  • Miri R , MehdipourA. Dihydropyridines and atypical MDR: a novel perspective of designing general reversal agents for both typical and atypical MDR. Bioorg. Med. Chem.16 (18), 8329–8334 (2008).
  • Shah A , BariwalJ, MolnárJ, KawaseM, MotohashiN. Advanced dihydropyridines as novel multidrug resistance Modifiers and reversing agents. Top. Heterocycl. Chem.15, 201–252 (2008).
  • Zhou F , ShaoO, CoburnA, MorrisE. Quantitative structure-activity and quantitative structure-pharmacokinetics relationship of 1,4-dihydropyridines and pyridines as multidrug resistance modulators. Pharm. Res.22 (12), 1989–1996 (2005).
  • Nobili S , LandiniI, GiglioniB, MiniE. Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets7 (7), 861–879 (2006).
  • Safa A . Photoaffinity labels for characterizing drug interaction sites of P-glycoprotein. Methods Enzymol.292, 289–307 (1998).
  • Borchers C , BoerR, KlemmKet al. Characterization of the dexniguldipine binding site in the multidrug resistance-related transport protein P-glycoprotein by photoaffinity labeling and mass spectrometry. Mol. Pharm.61 (6), 1366–1376 (2002).
  • Greenberg M . Identification of drug interaction sites in P-glycoprotein. Methods Enzymol.263, 307–317 (1998).
  • Boer R , UlrichW, HaasSet al. Interaction of cytostatics and chemosensitizers with the dexniguldipine binding site on P-glycoprotein. Euro. J. Pharmacology295 (2), 253–260 (1996).
  • Bruggemann P , GermanA, GottesmanM, PastanI. Two different regions of P-glycoprotein are photoafffinty-labeled by azidopine. J. Biol. Chem.264 (26), 15483–15488 (1989).
  • Ferry R , RusselA, CullenH. P-glycoprotein possesses a 1,4-dihydropyridine-selective drug acceptor site which is allosterically coupled to a Vinca alkaloid-selective binding site. Biophys. Res. Commun.188 (1), 440–445 (1992).
  • Ramachandra M , AmbudkarV, ChenDet al. Human P-glycoprotein exhibits reduced affinity for substrates during a catalytic transition state. Biochemistry37 (14), 5010–5019 (1998).
  • Ayesh S , ShaoM, SteinD. Co-operative, competitive and non-competitive interactions between modulators of P-glycoprotein. Biochim. Biophys. Acta1316 (1), 8–18 (1996).
  • Shapiro A , LingV. Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur. J. Biochem.250 (1), 130–137 (1997).
  • Shapiro A , FoxK, LamP, LingV. Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone. Evidence for a third drug-binding site. Eur. J. Biochem.259 (3), 841–850 (1999).
  • Van Veen W , MarqollesA, MullerM, HigginsF, KoningsN. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism, EMBO J.19 (11), 2503–2514 (2000).
  • Martin C , BerridgeG, HigginsF, MistryP, CharltonP, CallaghanR. Communication between multiple drug binding sites on P-glycoprotein. Mol. Pharmacol.58 (3), 624–632 (2000).
  • Leung CS , LeungSS, Tirado-RivesJ, JorgensenWL. Methyl effects on protein-ligand binding. J. Med. Chem.55 (9), 4489–4500 (2012).
  • Barreiro EJ , KummerleAE, Fraga, CAM. The methylation effect in medicinal chemistry. Chem. Rev.111 (9), 5215–5246 (2011).
  • Lemke TL , WilliamsDA, RocheVF, ZitoSW. Foye's Principles of Medicinal Chemistry (Seventh Edition).Lippincott Wiliiams and Wilkins, NY, USA (2013).
  • Tsukamoto T . Tough times for medicinal chemists: are we to blame?ACS Med. Chem. Lett.4 (4), 369–370 (2013).
  • Joslyn AF , LuchkowskiE, TriggleDJ. Dimeric 1,4-dihydropyridines as calcium channel antagonists. J. Med. Chem.31 (8), 1489–1492 (1988).
  • Sauna ZE , AndrusMB, TurnerTM, AmbudkarSV. Biochemical basis of polyvalency as a strategy for enhancing the efficacy of P-glycoprotein (ABCB1) modulators: stipiamide homodimers separated with defined-length spacers reverse drug efflux with greater efficacy. Biochemistry43 (8), 2262–2271 (2004).
  • Namanja HA , HrycynaCA, ChmielewskiJet al. Toward eradicating HIV reservoirs in the brain: inhibiting P-glycoprotein at the blood-brain barrier with prodrug abacavir dimers. J. Am. Chem. Soc.134 (6), 2976–2980 (2011).
  • Pires MM , EmmertD, Hrycyna, CA, ChmielewskiJ. Inhibition of P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine homodimers. Mol. Pharmacol.75 (1), 92–100 (2009).
  • Pires MM , HrycynaCA, ChmielewskiJ. Bivalent probes of the human multidrug transporter P-glycoprotein. Biochemistry45 (38), 11695–11702 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.