369
Views
0
CrossRef citations to date
0
Altmetric
Review

Focused Chemical Libraries – Design and Enrichment: An Example of Protein–Protein Interaction Chemical Space

, , &
Pages 1291-1307 | Published online: 27 Aug 2014

References

  • Munoz B . The FDA approvals of 2013: a watershed? Forbes, 3rd January (2014). www.forbes.com/sites/bernardmunos/2014/01/03/the-fda-approvals-of-2013-a-watershed/
  • Lipinski C , LombardoF, DominyB, FeeneyP. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.46(1–3), 3–26 (2001).
  • Veber DF , JohnsonSR, ChengHY, SmithBR, WardKW, KoppleKD. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.45(12), 2615–2623 (2002).
  • Oprea TI . Property distribution of drug-related chemical databases.J. Comput. Aided Mol. Des.14(3), 251–264 (2000).
  • Hughes JD , BlaggJ, PriceDAet al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 18(17), 4872–4875 (2008).
  • Lajiness MS , ViethM, EricksonJ. Molecular properties that influence oral drug-like behavior.Curr. Opin. Drug Discov. Devel.7(4), 470–477 (2004).
  • Gleeson MP , HerseyA, HannongbuaS. In-silico ADME models: a general assessment of their utility in drug discovery applications. Curr. Top. Med. Chem.11(4), 358–381 (2011).
  • Gleeson MP , HerseyA, MontanariD, OveringtonJ. Probing the links between in vitro potency, ADMET and physicochemical parameters.Nat. Rev. Drug Discov.10(3), 197–208 (2011).
  • Bickerton GR , PaoliniGV, BesnardJ, MuresanS, HopkinsAL. Quantifying the chemical beauty of drugs.Nat. Chem.4(2), 90–98 (2012).
  • Gleeson MP , ModiS, BenderAet al. The challenges involved in modeling toxicity data in silico: a review. Curr. Pharm. Des. 18(9), 1266–1291 (2012).
  • Gleeson MP , MontanariD. Strategies for the generation, validation and application of in silico ADMET models in lead generation and optimization. Expert Opin. Drug Metab. Toxicol.8(11), 1435–1446 (2012).
  • Gupta S . New drug development. In: Drug Discovery and Clinical Research. JayPee Brothers Medical Publishers Ltd, Delhi, India, 1–135 (2011).
  • Gregori-Puigjané E , MestresJ. Coverage and bias in chemical library design.Curr. Opin. Chem. Biol.12(3), 359–365 (2008).
  • Lipkin MJ , StevensAP, LivingstoneDJ, HarrisCJ. How large does a compound screening collection need to be?Comb. Chem. High Throughput Screen.11(6), 482–493 (2008).
  • Morelli X , BourgeasR, RocheP. Chemical and structural lessons from recent successes in protein–protein interaction inhibition (2P2I).Curr. Opin. Chem. Biol.15(4), 475–481 (2011).
  • Mullard A . Protein–protein interaction inhibitors get into the groove.Nat. Rev. Drug Discov.11(March 2012), 173–175 (2012).
  • Makley LN , GestwickiJE. Expanding the number of ‘druggable’ targets: non-enzymes and protein–protein interactions.Chem. Biol. Drug Des.81(1), 22–32 (2013).
  • Higueruelo AP , SchreyerA, BickertonGRJ, PittWR, GroomCR, BlundellTL. Atomic interactions and profile of small molecules disrupting protein–protein interfaces: the TIMBAL database.Chem. Biol. Drug Des.74(5), 457–467 (2009).
  • Bourgeas R , Basse M-J, Morelli X, Roche P. Atomic analysis of protein–protein interfaces with known inhibitors: the 2P2I database. PLoS ONE5(3), e9598 (2010).
  • Basse MJ , BetziS, BourgeasRet al. 2P2Idb: a structural database dedicated to orthosteric modulation of protein–protein interactions. Nucleic Acids Res. 41(Database issue), D824–D827 (2013).
  • Higueruelo AP , JubbH, BlundellTL. TIMBAL v2: update of a database holding small molecules modulating protein–protein interactions.Database (Oxford)2013, bat039 (2013).
  • Labbé CM , LacondeG, KuenemannMA, VilloutreixBO, SperandioO. iPPI-DB: a manually curated and interactive database of small non-peptide inhibitors of protein–protein interactions.Drug Discov. Today18(19–20), 958–968 (2013).
  • Kozakov D , HallDR, ChuangGYet al. Structural conservation of druggable hot spots in protein–protein interfaces. Proc. Natl Acad. Sci. USA 108(33), 13528–13533 (2011).
  • Sugaya N , FuruyaT. Dr. PIAS: an integrative system for assessing the druggability of protein–protein interactions.BMC Bioinformatics12, 50 (2011).
  • Wanner J , FryDC, PengZ, RobertsJ. Druggability assessment of protein–protein interfaces.Future Med. Chem.3(16), 2021–2038 (2011).
  • Koes DR , CamachoCJ. PocketQuery: protein–protein interaction inhibitor starting points from protein–protein interaction structure.Nucleic Acids Res.40(Web Server issue), W387–W392 (2012).
  • Metz A , CigliaE, GohlkeH. Modulating protein–protein interactions: from structural determinants of binding to druggability prediction to application.Curr. Pharm. Des.18(30), 4630–4647 (2012).
  • Ulucan O , EyrischS, HelmsV. Druggability of dynamic protein–protein interfaces.Curr. Pharm. Des.18(30), 4599–4606 (2012).
  • Hamon V , MorelliX. Druggability of protein–protein interactions. In: Understanding and Exploiting Protein–Protein Interactions as Drug Targets. Future Science Ltd, London, UK, 18–31 (2013).
  • Higueruelo AP , JubbH, BlundellTL. Protein–protein interactions as druggable targets: recent technological advances.Curr. Opin. Pharmacol.13(5), 791–796 (2013).
  • Reynes C , HostH, CamprouxACet al. Designing focused chemical libraries enriched in protein–protein interaction inhibitors using machine-learning methods. PLoS Comput. Biol. 6(3), e1000695 (2010).
  • Sperandio O , ReynèsC, CamprouxA, VilloutreixB. Rationalizing the chemical space of protein–protein interaction inhibitors.Drug Discov. Today15(5–6), 220–229 (2010).
  • Sperandio O . Editorial: toward the design of drugs on protein–protein interactions.Curr. Pharm. Des.18(30), 4585 (2012).
  • Villoutreix BO , LabbéCM, LagorceD, LacondeG, SperandioO. A leap into the chemical space of protein–protein interaction inhibitors.Curr. Pharm. Des.18(30), 4648–4667 (2012).
  • Fry D , HuangKS, Di Lello P et al. Design of libraries targeting protein–protein interfaces. ChemMedChem8(5), 726–732 (2013).
  • Hamon V , BrunelJM, CombesS, BasseMJ, RocheP, MorelliX. 2P2Ichem: focused chemical libraries dedicated to orthosteric modulation of protein–protein interactions.MedChemComm4(5), 797–809 (2013).
  • Hamon V , BourgeasR, DucrotPet al. 2P2I HUNTER: a tool for filtering orthosteric protein–protein interaction modulators via a dedicated support vector machine. J. R. Soc. Interface 11(90), 20130860 (2014).
  • Berman HM , WestbrookJ, FengZet al. The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000).
  • Gutmanas A , AlhroubY, BattleGMet al. PDBe: Protein Data Bank in Europe. Nucleic Acids Res. 42(Database issue), D285–D291 (2014).
  • Berman HM , KleywegtGJ, NakamuraH, MarkleyJL. The future of the protein data bank.Biopolymers99(3), 218–222 (2013).
  • Rose PW , BiC, BluhmWFet al. The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res. 41(Database issue), D475–D482 (2013).
  • DrugBank database. www.drugbank.ca
  • Vieth M , SutherlandJJ, RobertsonDH, CampbellRM. Kinomics: characterizing the therapeutically validated kinase space.Drug Discov. Today10(12), 839–846 (2005).
  • Harris CJ , HillRD, SheppardDW, SlaterMJ, StoutenPF. The design and application of target-focused compound libraries.Comb. Chem. High Throughput Screen.14(6), 521–531 (2011).
  • Sutherland JJ , GaoC, CahyaS, ViethM. What general conclusions can we draw from kinase profiling data sets?Biochim. Biophys. Acta1834(7), 1425–1433 (2013).
  • Acharya C , CoopA, PolliJE, MackerellAD. Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach.Curr. Comput. Aided Drug Des.7(1), 10–22 (2011).
  • Favia AD . Theoretical and computational approaches to ligand-based drug discovery.Front. Biosci. (Landmark Ed.)16, 1276–1290 (2011).
  • Ripphausen P , NisiusB, BajorathJ. State-of-the-art in ligand-based virtual screening.Drug Discov. Today16(9–10), 372–376 (2011).
  • Sukumar N , DasS. Current trends in virtual high throughput screening using ligand-based and structure-based methods.Comb. Chem. High Throughput Screen.14(10), 872–888 (2011).
  • Wilson GL , LillMA. Integrating structure-based and ligand-based approaches for computational drug design.Future Med. Chem.3(6), 735–750 (2011).
  • Chen L , MorrowJK, TranHT, PhatakSS, Du-CunyL, ZhangS. From laptop to benchtop to bedside: structure-based drug design on protein targets.Curr. Pharm. Des.18(9), 1217–1239 (2012).
  • Cheng T , LiQ, ZhouZ, WangY, BryantSH. Structure-based virtual screening for drug discovery: a problem-centric review.AAPS J.14(1), 133–141 (2012).
  • Pirhadi S , ShiriF, GhasemiJB. Methods and applications of structure based pharmacophores in drug discovery.Curr. Top. Med. Chem.13(9), 1036–1047 (2013).
  • Sheppard DW , LipkinMJ, HarrisCJ, CatanaC, StoutenPF. Strategies for small molecule library design.Curr. Pharm. Des.19, 1–9 (2013).
  • Sheppard DW , MacRitchieJA. Building in molecular diversity for targeted libraries.Drug Discov. Today Technol.10(4), e461–466 (2013).
  • Geppert H , VogtM, BajorathJ. Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation.J. Chem. Inf. Model50(2), 205–216 (2010).
  • Butkiewicz M , LoweEW, MuellerRet al. Benchmarking ligand-based virtual high-throughput screening with the PubChem database. Molecules 18(1), 735–756 (2013).
  • Rush TS , GrantJA, MosyakL, NichollsA. A shape-based 3-D scaffold hopping method and its application to a bacterial protein–protein interaction.J. Med. Chem.48(5), 1489–1495 (2005).
  • Tawa GJ , BaberJC, HumbletC. Computation of 3D queries for ROCS based virtual screens.J. Comput. Aided Mol. Des.23(12), 853–868 (2009).
  • Ebalunode JO , ZhengW. Molecular shape technologies in drug discovery: methods and applications.Curr. Top. Med. Chem.10(6), 669–679 (2010).
  • AbdulHameed MD , ChaudhuryS, SinghN, SunH, WallqvistA, TawaGJ. Exploring polypharmacology using a ROCS-based target fishing approach.J. Chem. Inf. Model52(2), 492–505 (2012).
  • Ballester PJ . Ultrafast shape recognition: method and applications.Future Med. Chem.3(1), 65–78 (2011).
  • Cannon EO , NigschF, MitchellJB. A novel hybrid ultrafast shape descriptor method for use in virtual screening.Chem. Cent. J.2, 3 (2008).
  • Armstrong MS , FinnPW, MorrisGM, RichardsWG. Improving the accuracy of ultrafast ligand-based screening: incorporating lipophilicity into ElectroShape as an extra dimension.J. Comput. Aided Mol. Des.25(8), 785–790 (2011).
  • Schreyer AM , BlundellT. USRCAT: real-time ultrafast shape recognition with pharmacophoric constraints.J. Cheminform.4(1), 27 (2012).
  • Sutherland JJ , NandigamRK, EricksonJA, ViethM. Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy.J. Chem. Inf. Model.47(6), 2293–2302 (2007).
  • Meng XY , ZhangHX, MezeiM, CuiM. Molecular docking: a powerful approach for structure-based drug discovery.Curr. Comput. Aided Drug Des.7(2), 146–157 (2011).
  • Gozalbes R , SimonL, FroloffN, SartoriE, MonteilsC, BaudelleR. Development and experimental validation of a docking strategy for the generation of kinase-targeted libraries.J. Med. Chem.51(11), 3124–3132 (2008).
  • Korb O , StützleT, ExnerTE. Accelerating molecular docking calculations using graphics processing units.J. Chem. Inf. Model51(4), 865–876 (2011).
  • Wu J , HongB, TakedaT, GuoJT. High performance transcription factor-DNA docking with GPU computing.Proteome Sci.10(Suppl. 1), S17 (2012).
  • Ballester PJ , MangoldM, HowardNIet al. Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification. J. R. Soc. Interface 9(77), 3196–3207 (2012).
  • Morelli X , HuppT. Searching for the Holy Grail; protein–protein interaction analysis and modulation.EMBO Rep.13(10), 877–879 (2012).
  • Stumpf M , ThorneT, de Silva E et al. Estimating the size of the human interactome. Proc. Natl Acad. Sci. USA105(19), 6959–6964 (2008).
  • Venkatesan K , RualJ, VazquezAet al. An empirical framework for binary interactome mapping. Nat. Methods 6(1), 83–90 (2009).
  • Arkin MR , WhittyA. The road less traveled: modulating signal transduction enzymes by inhibiting their protein–protein interactions.Curr. Opin. Chem. Biol.13(3), 284–290 (2009).
  • Wilson AJ . Inhibition of protein–protein interactions using designed molecules.Chem. Soc. Rev.38(12), 3289–3300 (2009).
  • Zinzalla G , ThurstonDE. Targeting protein–protein interactions for therapeutic intervention: a challenge for the future.Future Med. Chem.1(1), 65–93 (2009).
  • Selivanova G . Therapeutic targeting of p53 by small molecules.Semin. Cancer Biol.20(1), 46–56 (2010).
  • Ballatore C , BrundenKR, TrojanowskiJQ, LeeVM, SmithAB, HurynDM. Modulation of protein–protein interactions as a therapeutic strategy for the treatment of neurodegenerative tauopathies.Curr. Top. Med. Chem.11(3), 317–330 (2011).
  • Fry D . Small-Molecule Inhibitors of Protein–Protein Interactions. Vassilev L, Fry D (Eds). Springer, NJ, USA (2011).
  • Garner AL , JandaKD. Protein–protein interactions and cancer: targeting the central dogma.Curr. Top. Med. Chem.11(3), 258–280 (2011).
  • Wilson CG , ArkinMR. Small-molecule inhibitors of IL-2/IL-2R: lessons learned and applied.Curr. Top. Microbiol. Immunol.348, 25–59 (2011).
  • Bienstock RJ . Computational drug design targeting protein–protein interactions.Curr. Pharm. Des.18(9), 1240–1254 (2012).
  • Fry DC . Small-molecule inhibitors of protein–protein interactions: how to mimic a protein partner.Curr. Pharm. Des.18(30), 4679–4684 (2012).
  • Khoury K , DömlingA. P53 MDM2 inhibitors.Curr. Pharm. Des.18(30), 4668–4678 (2012).
  • Fayne D . De-peptidising protein–protein interactions – big jobs for small molecules.Drug Discov. Today Technol.10(4), e467–e474 (2013).
  • Grillo-Bosch D , ChoquetD, SainlosM. Inhibition of PDZ domain-mediated interactions.Drug Discov. Today Technol.10(4), e531–e540 (2013).
  • Ivanov AA , KhuriFR, FuH. Targeting protein–protein interactions as an anticancer strategy.Trends Pharmacol. Sci.34(7), 393–400 (2013).
  • Milroy LG , BrunsveldL, OttmannC. Stabilization and inhibition of protein–protein interactions: the 14-13-3 case study.ACS Chem. Biol.8(1), 27–35 (2013).
  • Mori M , VignaroliG, BottaM. Small molecules modulation of 14-13-3 protein–protein interactions.Drug Discov. Today Technol.10(4), e541–547 (2013).
  • Ottmann C . Small-molecule modulation of protein–protein interactions.Drug Discov. Today Technol.10(4), e499–500 (2013).
  • Silvian L , EnyedyI, KumaravelG. Inhibitors of protein–protein interactions: new methodologies to tackle this challenge.Drug Discov. Today Technol.10(4), e509–e515 (2013).
  • Wilson CG , ArkinMR. Probing structural adaptivity at PPI interfaces with small molecules.Drug Discov. Today Technol.10(4), e501–508 (2013).
  • Zhou G , ChuS. Discovery of small molecule fusion inhibitors targeting HIV-1 gp41.Curr. Pharm. Des.19(10), 1818–1826 (2013).
  • Zinzalla G . Understanding and Exploiting Protein–Protein Interactions as Drug Targets. Future Science Ltd, London, UK (2013).
  • Falchi F , CaporuscioF, RecanatiniM. Structure-based design of small-molecule protein–protein interaction modulators: the story so far.Future Med. Chem.6(3), 343–357 (2014).
  • Ferro S , De LucaL, MorrealeFet al. Synthesis and biological evaluation of novel antiviral agents as protein–protein interaction inhibitors. J. Enzyme Inhib. Med. Chem.29(2), 237–242 (2014).
  • Jin L , WangW, FangG. Targeting protein–protein interaction by small molecules.Annu. Rev. Pharmacol. Toxicol.54, 435–456 (2014).
  • Nero TL , MortonCJ, HolienJK, WielensJ, ParkerMW. Oncogenic protein interfaces: small molecules, big challenges.Nat. Rev. Cancer14(4), 248–262 (2014).
  • HTStec. Future Directions of HTS Trends. HTStec, Cambridge, London, 1–9 (2012).
  • Yin H , HamiltonAD. Strategies for targeting protein–protein interactions with synthetic agents.Angew. Chem. Int. Ed. Engl.44(27), 4130–4163 (2005).
  • Fletcher S , HamiltonAD. Targeting protein–protein interactions by rational design: mimicry of protein surfaces.J. R. Soc. Interface3(7), 215–233 (2006).
  • Davis JM , TsouLK, HamiltonAD. Synthetic non-peptide mimetics of alpha-helices.Chem. Soc. Rev.36(2), 326–334 (2007).
  • Vagner J , QuH, HrubyVJ. Peptidomimetics, a synthetic tool of drug discovery.Curr. Opin. Chem. Biol.12(3), 292–296 (2008).
  • Benyamini H , FriedlerA. Using peptides to study protein–protein interactions.Future Med. Chem.2(6), 989–1003 (2010).
  • Azzarito V , LongK, MurphyNS, WilsonAJ. Inhibition of α-helix-mediated protein–protein interactions using designed molecules.Nat. Chem.5(3), 161–173 (2013).
  • Hruby VJ , CaiM. Design of peptide and peptidomimetic ligands with novel pharmacological activity profiles.Annu. Rev. Pharmacol. Toxicol.53, 557–580 (2013).
  • Isvoran A , CraciunD, MartinyV, SperandioO, MitevaMA. Computational analysis of protein–protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.BMC Pharmacol. Toxicol.14, 31 (2013).
  • Akram ON , DegraffDJ, SheehanJHet al. Tailoring peptidomimetics for targeting protein–protein interactions. Mol. Cancer Res. 12(7), 967–978 (2014).
  • Jayatunga MK , ThompsonS, HamiltonAD. α-helix mimetics: outwards and upwards.Bioorg. Med. Chem. Lett.24(3), 717–724 (2014).
  • Pagliaro L , FeldingJ, AudouzeKet al. Emerging classes of protein–protein interaction inhibitors and new tools for their development. Curr. Opin. Chem. Biol. 8(4), 442–449 (2004).
  • Neugebauer A , HartmannRW, KleinCD. Prediction of protein–protein interaction inhibitors by chemoinformatics and machine learning methods.J. Med. Chem.50(19), 4665–4668 (2007).
  • Wells JA , McClendonCL. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces.Nature450(7172), 1001–1009 (2007).
  • ASINEX’s Protein–Protein Interactions (PPI) Library. www.asinex.com/PPI_Library.html
  • Drug-Like Compounds from ChemDiv. http://us.chemdiv.com/index.php?option=com_content&view=article&id=85&Itemid=184
  • Life Chemicals: Online Building Blocks Shop. www.lifechemicals.com/downloads/9356/13062/13074
  • Target-focused libraries. www.otavachemicals.com/products/target-focused-libraries/protein-protein-interaction
  • Bromodomain Containing Protein 4 Brd4-Focused Library. www.otavachemicals.com/targets/bromodomain-containing-protein-4-brd4-focused-library
  • 2P2I Hunter. http://2p2idb.cnrs-mrs.fr/2p2i_hunter.html
  • Fuller JC , BurgoyneNJ, JacksonRM. Predicting druggable binding sites at the protein–protein interface.Drug Discovery Today14(3–4), 155–161 (2009).
  • Lovering F , BikkerJ, HumbletC. Escape from flatland: increasing saturation as an approach to improving clinical success.J. Med. Chem.52(21), 6752–6756 (2009).
  • Marson CM . New and unusual scaffolds in medicinal chemistry.Chem Soc Rev.40(11), 5514–5533 (2011).
  • Dragon 6. www.talete.mi.it
  • Tse C , ShoemakerAR, AdickesJet al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68(9), 3421–3428 (2008).
  • Ackler S , MittenMJ, FosterKet al. The Bcl-2 inhibitor ABT-263 enhances the response of multiple chemotherapeutic regimens in hematologic tumors in vivo. Cancer Chemother. Pharmacol. 66(5), 869–880 (2010).
  • Tahir SK , WassJ, JosephMKet al. Identification of expression signatures predictive of sensitivity to the Bcl-2 family member inhibitor ABT-263 in small cell lung carcinoma and leukemia/lymphoma cell lines. Mol. Cancer Ther. 9(3), 545–557 (2010).
  • Gandhi L , CamidgeDR, Ribeiro de Oliveira M et al. Phase I study of navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J. Clin. Oncol.29(7), 909–916 (2011).
  • Zuegg J , CooperMA. Drug-likeness and increased hydrophobicity of commercially available compound libraries for drug screening.Curr. Top. Med. Chem.12(14), 1500–1513 (2012).
  • Walters WP , MurckoMA. Prediction of ‘drug-likeness’.Adv. Drug Deliv. Rev.54(3), 255–271 (2002).
  • Rishton GM . Nonleadlikeness and leadlikeness in biochemical screening.Drug Discov. Today8(2), 86–96 (2003).
  • Moreira IS , MartinsJM, RamosRM, FernandesPA, RamosMJ. Understanding the importance of the aromatic amino-acid residues as hot-spots.Biochim. Biophys. Acta1834(1), 404–414 (2013).
  • Fry DC , So S-S. Modulators of protein–protein interactions: importance of three-dimensionality. In: Protein–Protein Interactions in Drug Discovery. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 55–62 (2013).
  • Lipinski C , HopkinsA. Navigating chemical space for biology and medicine.Nature432(7019), 855–861 (2004).
  • Renner S , van OtterloWA, Dominguez SeoaneMet al. Bioactivity-guided mapping and navigation of chemical space. Nat. Chem. Biol.5(8), 585–592 (2009).
  • Reymond JL , AwaleM. Exploring chemical space for drug discovery using the chemical universe database.ACS Chem. Neurosci.3(9), 649–657 (2012).
  • Ruddigkeit L , BlumLC, ReymondJL. Visualization and virtual screening of the chemical universe database GDB-17.J. Chem. Inf. Model53(1), 56–65 (2013).
  • Schwartz J , AwaleM, ReymondJL. SMIfp (SMILES fingerprint) chemical space for virtual screening and visualization of large databases of organic molecules.J. Chem. Inf. Model53(8), 1979–1989 (2013).
  • Oprea TI , GottfriesJ. Chemography: the art of navigating in chemical space.J. Comb. Chem.3(2), 157–166 (2001).
  • Colliandre L , Le Guilloux V, Bourg S, Morin-Allory L. Visual characterization and diversity quantification of chemical libraries: 2. Analysis and selection of size-independent, subspace-specific diversity indices. J. Chem. Inf. Model52(2), 327–342 (2012).
  • Le Guilloux V , ColliandreL, BourgS, GuénegouG, Dubois-ChevalierJ, Morin-AlloryL. Visual characterization and diversity quantification of chemical libraries: 1. creation of delimited reference chemical subspaces.J. Chem. Inf. Model51(8), 1762–1774 (2011).
  • Screening Assistant 2. http://sa2.sourceforge.net
  • Le Guilloux V , ArraultA, ColliandreL, BourgS, VayerP, Morin-AlloryL. Mining collections of compounds with Screening Assistant 2.J. Cheminform.4(1), 20 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.