151
Views
0
CrossRef citations to date
0
Altmetric
Special Focus Issue: Rare Diseases – Review

Progress Towards Next-Generation Therapeutics for Cystic Fibrosis

&
Pages 1067-1079 | Published online: 28 Jul 2014

References

  • Muller F , AubryMC, GasserB, DuchatelF, BouéJ, BouéA. Prenatal diagnosis of cystic fibrosis. II. Meconium ileus in affected fetuses. Prenatal Diagn.5 (2), 109–117 (1985).
  • Farrelly PJ , CharlesworthC, LeeS, SouthernKW, BaillieCT. Gastrointestinal surgery in cystic fibrosis: a 20-year review. J. Pediatr. Surg.49 (2), 280–283 (2014).
  • Nash KL , AllisonME, McKeonD, LomasDJ, HaworthCS, BiltonD, AlexanderGJ. A single centre experience of liver disease in adults with cystic fibrosis 1995–2006. J. Cyst. Fibros.7 (3), 252–257 (2007).
  • Cheng K , AshbyD, SmythRL. Ursodeoxycholic acid for cystic fibrosis-related liver disease. Cochrane Database Syst. Rev.10, CD000222 (2012).
  • Aanæs K . Bacterial sinusitis can be a focus for initial lung colonisation and chronic lung infection in patients with cystic fibrosis. J. Cyst. Firbros.12 (Suppl. 2), S1–S20 (2013).
  • Cox MJ , AllgaierM, TaylorBet al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS ONE5 (6), e11044 (2010).
  • Wolter DJ , EmersonJC, McNamaraSet al. Staphylococcus aureus small-colony variants are independently associated with worse lung disease in children with cystic fibrosis. Clin. Infect. Dis.57 (3), 384–391 (2013).
  • Quinn RA , LimYW, MaughanH, ConradD, RohwerF, WhitesonKL. Biogeochemical forces shape the composition and physiology of polymicrobial communities in the cystic fibrosis lung. MBio5 (2), e00956–e01013 (2014).
  • Zach MS , OberwaldnerB. Chest physiotherapy – the mechanical approach to antiinfective therapy in cystic fibrosis. Infection15 (5), 381–384 (1987).
  • Main E , PrasadA, SchansC. Conventional chest physiotherapy compared with other airway clearance techniques in cystic fibrosis. Cochrane Database Syst. Rev.1, CD002011 (2005).
  • McKoy NA , SaldanhaIJ, OdelolaOA, RobinsonKA. Active cycle of breathing technique for cystic fibrosis. Cochrane Database Syst. Rev.12, CD007862 (2012).
  • Letham MI , JamesSL, MarriottC, BurkeJF. The origin of DNA associated with mucus glycoproteins in cystic fibrosis sputum. Eur. Respir. J.3 (1), 19–23 (1990).
  • Rubin B . Mucus, phlegm, and sputum in cystic fibrosis. Respir. Care54 (6), 726–732 (2009).
  • Bragonzi A , WorlitzschD, PierGB, TimpertP, UlrichM, HentzerM, AndersenJB, GivskovM, ConeseM. Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model. J. Infect. Dis.192 (3), 410–419 (2005).
  • Fancello L , DesnuesC, RaoultD, RolainJM. Bacteriophages and diffusion of genes encoding antimicrobial resistance in cystic fibrosis sputum microbiota. J. Antimicrob. Chemother.66 (11), 2448–2454 (2011).
  • Ciofu O , MandsbergLF, BjarnsholtT, WassermannT, H⊘ibyN. Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology156 (Pt 4), 1108–1119 (2010).
  • Fauvart M1 , De GrooteVN, MichielsJ. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J. Med. Microbiol.60 (6), 699–709 (2011).
  • Mulcahy LR1 , BurnsJL, LoryS, LewisK. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J. Bacteriol.192 (23), 6191–6199 (2010).
  • Moskwa P , LorentzenD, ExcoffonKJet al. A novel host defense system of airways is defective in cystic fibrosis. Am. J. Respir. Crit. Care Med.175 (2), 174–183 (2007).
  • Zheng S , XuW, BoseS, BanerjeeAK, HaqueSJ, ErzurumSC. Impaired nitric oxide synthase-2 signaling pathway in cystic fibrosis airway epithelium. Am. J. Physiol. Lung Cell. Mol. Physiol.287 (2), L374–L381 (2004).
  • Luciani A , VillellaVR, EspositoSet al. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat. Cell. Biol.12 (9), 863–875 (2010).
  • Dodge JA , LewisPA, StantonM, WilsherJ. Cystic fibrosis mortality and survival in the UK: 1947–2003. Eur. Resp. J.29, 522–526 (2007).
  • Serisier DJ , TuckA, MatleyD, CarrollMP, JonesG. Antimicrobial susceptibility and synergy studies of cystic fibrosis sputum by direct sputum sensitivity testing. Eur. J. Clin. Microbiol. Infect. Dis.31 (11), 3211–3216.
  • Prayle A , WatsonA, FortnumH, SmythA. Side effects of aminoglycosides on the kidney, ear and balance in cystic fibrosis. Thorax65 (7), 654–658 (2010).
  • De Soyza A , ArcherL, WardleJ, ParryG, DarkJH, GouldK, CorrisPA. Pulmonary transplantation for cystic fibrosis: pre-transplant recipient characteristics in patients dying of peri-operative sepsis. J. Heart Lung Transplant.22 (7), 764–769 (2003).
  • Stutman HR , LiebermanJM, NussbaumE, MarksMI. Antibiotic prophylaxis in infants and young children with cystic fibrosis: a randomized controlled trial. J. Pediatr.140 (3), 299–305 (2002).
  • Ryan G , SinghM, DwanK. Inhaled antibiotics for long-term therapy in cystic fibrosis. Cochrane Database Syst Rev.3, CD001021 (2011).
  • Wagener JS , RasouliyanL, VanDevanterDRet al. Oral, inhaled, and intravenous antibiotic choice for treating pulmonary exacerbations in cystic fibrosis. Pediatr. Pulmonol.48 (7), 666–673 (2013).
  • Cheng K , SmythRL, GovanJRet al. Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet.348 (9028), 639–642 (1996).
  • Scalley RD , ConnerCS. Acetaminophen poisoning: a case report of the use of acetylcysteine. Am. J. Hosp. Pharm.35 (8), 964–967 (1978).
  • Griese M , KapplerM, EismannCet al. Inhalation treatment with glutathione in patients with cystic fibrosis. A randomized clinical trial. Am. J. Respir. Crit. Care Med.188 (1), 83–89 (2013).
  • Tam J , NashEF, RatjenF, TullisE, StephensonA. Nebulized and oral thiol derivatives for pulmonary disease in cystic fibrosis. Cochrane Database Syst. Rev.7, CD007168 (2013).
  • Nasr SZ , ChouW, VillaKF, ChangE, BroderMS. Adherence to dornase alfa treatment among commercially insured patients with cystic fibrosis. J. Med. Econ.16 (6), 801–808 (2013).
  • Witt DM , AndersonL. Dornase alfa: a new option in the management of cystic fibrosis. Pharmacotherapy16 (1), 40–48 (1996)
  • Wark P , MacDonaldVM. Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst. Rev.2, CD001506 (2009).
  • US FDA. Pulmonary-allergy drugs advisory committee meeting (2013). NDA# 202049: mannitol inhalation powder (proposed trade name Bronchitol®) for oral inhalation sponsored by Pharmaxis, for the management of cystic fibrosis (CF) in patients aged 6 years and older to improve pulmonary function. www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Pulmonary-AllergyDrugsAdvisoryCommittee/UCM336995.pdf
  • European Medicines Agency, Committee for Medicinal Products for Human Use (2012). CHMP Assessment Report, Bronchitol®. www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/001252/WC500130591.pdf
  • National Institute for Health and Clinical Excellence (2012). Mannitol dry powder for inhalation for treating cystic fibrosis [online]. www.nice.org.uk/nicemedia/live/13969/61603/61603.pdf
  • Scottish Medicines Consortium (2013). Mannitol, 400 mg, inhalation powder, hard capsule, (Bronchitol®). www.scottishmedicines.org.uk/files/advice/inhaled_mannitol_Bronchitol_FINAL_January_2013_for_website.pdf
  • Bilton D , DaviskasE, AndersonSDet al. A Phase III randomised study of the efficacy and safety of inhaled dry powder mannitol (Bronchitol) for the symptomatic treatment of non-cystic fibrosis bronchiectasis. Chest144 (1), 215–225 (2013).
  • Barraud N , BusonA, JarolimekW, RiceSA. Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS ONE8 (12), e84220 (2013).
  • LiPuma JJ . Microbiological and immunologic considerations with aerosolized drug delivery. Chest120, 18S–23S (2001).
  • Daniels T , MillsN, WhitakerP. Nebuliser systems for drug delivery in cystic fibrosis. Cochrane Database Syst Rev.4, CD007639 (2013).
  • Kesser KC , GellerDE. New aerosol delivery devices for cystic fibrosis. Resir. Care.54 (6), 754–767 (2009).
  • Daniels T , GoodacreL, SuttonC, PollardK, ConwayS, PeckhamD. Accurate assessment of adherence: self-report and clinician report vs electronic monitoring of nebulisers. Chest140 (2), 425–432 (2011).
  • Geller DE , WeersJ, HeuerdingS. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere™ technology. J. Aerosol. Med. Pulm. Drug Deliv.24 (4), 175–182 (2011).
  • Geller DE , NasrSZ, PiggottS, HeE, AngyalosiG, HigginsM. Tobramycin inhalation powder in cystic fibrosis patients: response by age group. Respir. Care doi: 10.4187/respcare.02264 (2013) (Epub ahead of print).
  • de Vrankrijker AM , van der EntCK, van BerkhoutFTet al. Aspergillus fumigatus colonization in cystic fibrosis: implications for lung function? Clin. Microbiol. Infect. 17 (9), 1381–1386 (2011).
  • Klemmer A , KrämerI, KaminW. Physicochemical compatibility and stability of nebulizable drug admixtures containing dornase alfa and tobramycin. Pulm. Pharmacol. Ther. doi:10.1016/j.pupt.2013.08.003 (2013) (Epub ahead of print).
  • Silvis MR , PiccianoJA, BertrandC, WeixelK, BridgesRJ, BradburyNA. A mutation in the cystic fibrosis transmembrane conductance regulator generates a novel internalization sequence and enhances endocytic rates. J. Biol. Chem.278 (13), 11554–11560 (2003).
  • Welch EM , BartonER, ZhuoJet al. PTC 124 targets genetic disorders caused by nonsense mutations. Nature447 (7140), 87–91 (2007).
  • Rogan MP , StoltzDA, HornickDB. Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking and opportunities for mutation-specific treatment. Chest139, 1480–1490 (2011).
  • Kerem E , HirawatS, ArmoniSet al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective Phase II trial. Lancet372 (9640), 719–727 (2008).
  • Auld, DS, ThorneN, MaguireWF, IngleseJ. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proc. Natl Acad. Sci. USA106 (9), 3585–3590 (2009).
  • Auld DS , Lovell S, Thorne Net al. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124. Proc Natl Acad Sci. USA107 (11), 4878–4883 (2010).
  • McElroy SP , NomuraT, TorrieLSet al. A lack of premature termination codon read-through. PLoS Biol.11 (6), e1001593 (2013).
  • Sermet-Gaudelus I , BoeckKD, CasimirGJet al. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am. J. Respir. Crit. Care Med.182 (10), 1262–1272 (2010).
  • Cystic Fibrosis Foundation, Clinical research information sheet (2012). Ataluren (PTC 124) in Cystic Fibrosis [online]. www.cff.org/UploadedFiles/ClinicalResearchPDF/CR84.pdf
  • Drake KM , DunmoreBJ, McNellyLN, MorrellNW, AldredMA. Correction of nonsense BMPR2 and SMAD9 mutations by Ataluren in pulmonary arterial hypertension. Am. J. Respir. Cell. Mol. Biol.49 (3), 403–409 (2013)
  • Li M , Andersson-LendahlM, SejersenT, ArnerA. Muscle dysfunction and structural defects of dystrophin-null sapje mutant zebrafish larvae are rescued by Ataluren treatment. FASEB J.28 (4), 1593–1599 (2013).
  • Finkel RS , FlaniganKM, WongBet al. Phase 2a study of Ataluren-mediated dystrophin production in patients with nonsense mutation duchenne muscular dystrophy. PLoS ONE8 (12), e81302 (2013).
  • Rogan MP , StoltzDA, HornickDB. Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking and opportunities for mutation-specific treatment. Chest139, 1480–1490 (2011).
  • Van Goor F , HadidaS, GrootenhuisPD Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770 Proc. Natl Acad. Sci. USA. 106 (44), 18825–18830 (2009).
  • Eckford PD , LiC, RamjeesinghM, BearCE. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J. Biol. Chem.287 (44), 36639–36649 (2012).
  • Jih KY , HwangTC. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc. Natl Acad. Sci. USA110 (11), 4404–4409 (2013).
  • Ramsey BW , DaviesJ, McElvaneyNGet al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med.365 (18), 1663–1672 (2011).
  • Ren HY , GroveDE, De La RosaOet al. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol. Biol. Cell.24 (19), 3016–3024 (2013).
  • Loo TW , BartlettMC, ClarkeDM. Corrector VX-809 stabilizes the first transmembrane domain of CFTR. Biochem. Pharmacol.86 (5), 612–619 (2013).
  • Farinha CM , King-UnderwoodJ, SousaMet al. Revertants, low temperature, and correctors reveal the mechanism of F508del-CFTR rescue by VX-809 and suggest multiple agents for full correction. Chem. Biol.20 (7), 943–955 (2013).
  • He L1 , KotaP, AleksandrovAA, CuiL, JensenT, DokholyanNV, RiordanJR. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein. FASEB J.27 (2), 536–545 (2013).
  • Rabeh WM , BossardF, XuHet al. Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function. Cell148 (1–2), 150–163 (2012).
  • Okiyoneda T1 , VeitG, DekkersJFet al. Mechanism-based corrector combination restores ΔF508-CFTR folding and function. Nat. Chem. Biol.9 (7), 444–454 (2013).
  • Clancy JP , RoweSM, AccursoFJet al. Results of a Phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax67 (1), 12–18 (2012).
  • Galietta LJ . Managing the underlying cause of cystic fibrosis: a future role for potentiators and correctors. Pediatr. Drugs.15 (5), 393–402 (2013).
  • Farinha CM , King-UnderwoodJ, SousaMet al. Revertants, low temperature, and correctors reveal the mechanism of F508del-CFTR rescue by VX-809 and suggest multiple agents for full correction. Chem. Biol.20 (7), 943–955 (2013).
  • Dowling RB , NewtonR, RobichaudA, ColePJ, BarnesPJ, WilsonR. Effect of inhibition of nitric oxide synthase on Pseudomonas aeruginosa infection of respiratory mucosa in vitro. Am. J. Respir. Cell. Mol. Biol.19 (6), 950–958 (1998).
  • Satoh S , OishiK, IwagakiAet al. Dexamethasone impairs pulmonary defence against Pseudomonas aeruginosa through suppressing iNOS gene expression and peroxynitrite production in mice. Clin. Exp. Immunol.126 (2), 266–273 (2001).
  • Brown RK , KellyFJ. Evidence for increased oxidative damage in patients with cystic fibrosis. Pediatr. Res.36 (4), 487–493 (1994).
  • Brown RK , WyattH, PriceJF, KellyFJ. Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. Eur. Respir. J.9 (2), 334–339 (1996).
  • Michl RK , HentschelJ, FischerC, BeckJF, MainzJG. Reduced nasal nitric oxide production in cystic fibrosis patients with elevated systemic inflammation markers. PLoS ONE8 (11), e79141 (2013).
  • Walker WT , LiewA, HarrisA, ColeJ, LucasJS. Upper and lower airway nitric oxide levels in primary ciliary dyskinesia, cystic fibrosis and asthma. Respir. Med.107 (3), 380–386 (2013).
  • Grasemann H , SchwiertzR, MatthiesenS, RackéK, RatjenF. Increased arginase activity in cystic fibrosis airways. Am. J. Respir. Crit. Care Med.172 (12), 1523–1528 (2005).
  • Grasemann H , SchwiertzR, GrasemannC, VesterU, RackéK, RatjenF. Decreased systemic bioavailability of L-arginine in patients with cystic fibrosis. Respir. Res.7, 87 (2006).
  • Everard ML , DonnellyD. A pilot study of oral L-arginine in cystic fibrosis. J. Cyst. Fibros.4 (1), 67–69 (2005).
  • Grasemann H , GrasemannC, KurtzF, Tietze-SchillingsG, VesterU, RatjenF. Oral L-arginine supplementation in cystic fibrosis patients: a placebo-controlled study. Eur. Respir. J.25 (1), 62–68 (2005).
  • Grasemann H , TullisE, RatjenF. A randomized controlled trial of inhaled L-arginine in patients with cystic fibrosis. J. Cyst. Fibros.12 (5), 468–474 (2013).
  • Miller CC , HergottCA, RohanM, Arsenault-MehtaK, DöringG, MehtaS. Inhaled nitric oxide decreases the bacterial load in a rat model of Pseudomonas aeruginosa pneumonia. J. Cyst. Fibros.12 (6), 817–820 (2013).
  • Hopkins N , GunningY, O’CroininDF, LaffeyJG, McLoughlinP. Anti-inflammatory effect of augmented nitric oxide production in chronic lung infection. J. Pathol.209 (2), 198–205 (2006).
  • Chandler JD , MinE, HuangJ, NicholsDP, DayBJ. Nebulized thiocyanate improves lung infection outcomes in mice. Br. J. Pharmacol.169 (5), 1166–1177 (2013).
  • Levine B , KroemerG. Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ.16 (1), 1–2 (2009).
  • Junkins RD , ShenA, RosenK, McCormickC, LinTJ. Autophagy enhances bacterial clearance during P. aeruginosa lung infection. PLoS ONE8 (8), e72263 (2013).
  • Rich DP , AndersonMP, GregoryRJet al. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature347 (6291), 358–363 (1990).
  • Olsen JC , JohnsonLG, StuttsMJ, SarkadiB, YankaskasJR, SwanstromR, BoucherRC. Correction of the apical membrane chloride permeability defect in polarized cystic fibrosis airway epithelia following retroviral-mediated gene transfer. Hum. Gene Ther.3 (3), 253–266 (1992).
  • Yoshimura K , RosenfeldMA, NakamuraHet al. Expression of the human cystic fibrosis transmembrane conductance regulator gene in the mouse lung after in vivo intratracheal plasmid-mediated gene transfer. Nucleic Acid Res.20 (12), 3233–3240 (1992).
  • Hyde SC , GillDR, HigginsCFet al. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature362 (6417), 250–255 (1993).
  • Zabner J , CoutureLA, GregoryRJ, GrahamSM, SmithAE, WelshMJ. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell75 (2), 207–216 (1993).
  • Caplen NJ , GaoX, HayesPet al. Gene therapy for cystic fibrosis in humans by liposome-mediated DNA transfer: the production of resources and the regulatory process. Gene Ther.1 (2), 139–147 (1994).
  • Johnson LG . Gene therapy for cystic fibrosis. Chest107 (2 Suppl.), 77S–83S (1995).
  • Lehrman S . Virus treatment questioned after gene therapy death. Nature401 (6753), 517–518 (1999).
  • Horsley AR , DaviesJC, GrayRD, MacleodKA, DonovanJ, AzizZA, BellNJ, RainerM, Mt-IsaS, VoaseN, DewarMH, SaundersC, GibsonJS, Parra-LeitonJ, LarsenMD, JeswietS, SoussiS, BakarY, MeisterMG, TylerP, DohertyA, HansellDM, AshbyD, HydeSC, GillDR, GreeningAP, PorteousDJ, InnesJA, BoydAC, GriesenbachU, CunninghamS, AltonEW. Changes in physiological, functional and structural markers of cystic fibrosis lung disease with treatment of a pulmonary exacerbation. Thorax68 (6),  532–539 (2013).
  • Kent L , ReixP, InnesJAet al. Lung clearance index: evidence for use in clinical trials in cystic fibrosis. J. Cyst. Fibros.13 (2), 123–138 (2014).
  • Alton EW , BoydAC, ChengSHet al. A randomised, double-blind, placebo-controlled Phase IIb clinical trial of repeated application of gene therapy in patients with cystic fibrosis. Thorax68 (11), 1075–1077 (2013).
  • Junkins RD , McCormickC, LinTJ. The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections. Autophagy10 (3), 538–547 (2014).
  • Lee TW , SouthernKW. Topical cystic fibrosis transmembrane conductance regulator gene replacement for cystic fibrosis-related lung disease. Cochrane Database Syst Rev.11, CD005599 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.