482
Views
0
CrossRef citations to date
0
Altmetric
Review

The Current Stage of Cathepsin B Inhibitors As Potential Anticancer Agents

, &
Pages 1355-1371 | Published online: 27 Aug 2014

References

  • Rawlings ND , BarrettAJ, BatemanA. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res.40 (Database issue), D343–50 (2012).
  • Turk B . Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov.5 (9), 785–799 (2006).
  • Turk B , TurkD, TurkV. Protease signalling: the cutting edge. EMBO J.31 (7), 1630–1643 (2012).
  • Puente XS , SánchezLM, OverallCM, López-OtínC. Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet.4 (7), 544–558 (2003).
  • Zimmerman B , ValentinoLA. Hemophilia: in review. Pediatr. Rev.34 (7), 289–294; quiz 295 (2013).
  • Charnley RM . Hereditary pancreatitis. World J. Gastroenterol.9 (1), 1–4 (2003).
  • Gelb BD , ShiGP, ChapmanHA, DesnickRJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science273 (5279), 1236–1238 (1996).
  • Hart TC , HartPS, MichalecMDet al. Haim-Munk syndrome and Papillon-Lefèvre syndrome are allelic mutations in cathepsin C. J. Med. Genet. 37 (2), 88–94 (2000).
  • Mohamed MM , SloaneBF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer6 (10), 764–775 (2006).
  • Kos J , LahTT. Cysteine proteinases and their endogenous inhibitors: target proteins for prognosis, diagnosis and therapy in cancer (review). Oncol. Rep.5 (6), 1349–1361 (1998).
  • Schmitt M , JaenickeF, GraeffH. Protease, matrix degradation and tumour-cell spread. Fybrinolysis6, 1–17 (1992).
  • Kostoulas G , LangA, NagaseH, BaiciA. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett.455 (3), 286–290 (1999).
  • Lenarcic B , KosJ, DolencI, LucovnikP, KrizajI, TurkV. Cathepsin D inactivates cysteine proteinase inhibitors, cystatins. Biochem. Biophys. Res. Commun.154 (2), 765–772 (1988).
  • Koblinski JE , AhramM, SloaneBF. Unraveling the role of proteases in cancer. Clin. Chim. Acta291 (2), 113–135 (2000).
  • Vasiljeva O , TurkB. Dual contrasting roles of cysteine cathepsins in cancer progression: apoptosis versus tumour invasion. Biochimie90 (2), 380–386 (2008).
  • Obermajer N , DoljakB, KosJ. Cysteine cathepsins: regulators of antitumour immune response. Expert Opin. Biol. Ther.6 (12), 1295–1309 (2006).
  • Wang J , ChenL, LiY, GuanX-Y. Overexpression of cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. PLoS ONE6 (9), e24967 (2011).
  • Roberts R . Lysosomal cysteine proteases: structure, function and inhibition of cathepsins. Drug News Perspect.18 (10), 605–614 (2005).
  • Turk V , TurkB, TurkD. Lysosomal cysteine proteases: facts and opportunities. EMBO J.20 (17), 4629–4633 (2001).
  • Turk D , GuncarG, PodobnikM, TurkB. Revised definition of substrate binding sites of papain-like cysteine proteases. Biol. Chem.379 (2), 137–147 (1998).
  • Turk D , GuncarG. Lysosomal cysteine proteases (cathepsins): promising drug targets. Acta. Crystallogr. D. Biol. Crystallogr.59 (Pt 2), 203–213 (2003).
  • Musil D , ZucicD, TurkDet al. The refined 2.15 A x-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J.10 (9), 2321–2330 (1991).
  • Barrett AJ , KirschkeH. Cathepsin B, cathepsin H and cathepsin L. Methods Enzymol. Pt C80, 535–561 (1981).
  • Klemencic I , CarmonaAK, CezariMHet al. Biochemical characterization of human cathepsin X revealed that the enzyme is an exopeptidase, acting as carboxymonopeptidase or carboxydipeptidase. Eur. J. Biochem.267 (17), 5404–5412 (2000).
  • Therrien C , LachanceP, SuleaTet al. Cathepsins X and B can be differentiated through their respective mono- and dipeptidyl carboxypeptidase activities. Biochemistry.40 (9), 2702–2711 (2001).
  • Puzer L , CotrinSS, CezariMHSet al. Recombinant human cathepsin X is a carboxymonopeptidase only: a comparison with cathepsins B and L. Biol. Chem.386 (11), 1191–1195 (2005).
  • Guncar G , PodobnikM, PungercarJ, StrukeljB, TurkV, TurkD. Crystal structure of porcine cathepsin H determined at 2.1 A resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure6 (1), 51–61 (1998).
  • Vasiljeva O , DolinarM, TurkV, TurkB. Recombinant human cathepsin H lacking the mini chain is an endopeptidase. Biochemistry42 (46), 13522–13528 (2003).
  • Turk V , KosJ, TurkB. Cysteine cathepsins (proteases) – on the main stage of cancer?Cancer Cell5 (5), 409–410 (2004).
  • Brix K , DunkhorstA, MayerK, JordansS. Cysteine cathepsins: cellular roadmap to different functions. Biochimie90 (2), 194–207 (2008).
  • Berquin IM , CaoL, FongD, SloaneBF. Identification of two new exons and multiple transcription start points in the 5´-untranslated region of the human cathepsin-B-encoding gene. Gene159 (2), 143–149 (1995).
  • Mort JS , ButtleDJ. Cathepsin B. Int. J. Biochem. Cell Biol.29 (5), 715–720 (1997).
  • Reiser J , AdairB, ReinheckelT. Specialized roles for cysteine cathepsins in health and disease. J. Clin. Invest.120 (10), 3421–3431 (2010).
  • Tanaka Y , TanakaR, KawabataT, NoguchiY, HimenoM. Lysosomal cysteine protease, cathepsin B, is targeted to lysosomes by the mannose 6-phosphate-independent pathway in rat hepatocytes: site-specific phosphorylation in oligosaccharides of the proregion. J. Biochem.128 (1), 39–48 (2000).
  • Mach L , StüweK, HagenA, BallaunC, GlösslJ. Proteolytic processing and glycosylation of cathepsin B. The role of the primary structure of the latent precursor and of the carbohydrate moiety for cell-type-specific molecular forms of the enzyme. Biochem. J.282 (Pt 2), 577–582 (1992).
  • Linebaugh BE , SameniM, DayNA, SloaneBF, KepplerD. Exocytosis of active cathepsin B enzyme activity at pH 7.0, inhibition and molecular mass. Eur. J. Biochem.264 (1), 100–109 (1999).
  • Rowan AD , MasonP, MachL, MortJS. Rat procathepsin B. Proteolytic processing to the mature form in vitro. J. Biol. Chem.267 (22), 15993–15999 (1992).
  • Caglic D , PungercarJR, PejlerG, TurkV, TurkB. Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide-mature enzyme interactions. J. Biol. Chem.282 (45), 33076–33085 (2007).
  • Rozman J , StojanJ, KuheljR, TurkV, TurkB. Autocatalytic processing of recombinant human procathepsin B is a bimolecular process. FEBS Lett.459 (3), 358–362 (1999).
  • Pungercar JR , CaglicD, SajidMet al. Autocatalytic processing of procathepsin B is triggered by proenzyme activity. FEBS J.276 (3), 660–668 (2009).
  • Illy C , QuraishiO, WangJ, PurisimaE, VernetT, MortJS. Role of the occluding loop in cathepsin B activity. J. Biol. Chem.272 (2), 1197–1202 (1997).
  • Nägler DK , StoreraC, PortaroFC, CarmonaE, JulianoL, MénardR. Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts. Biochemistry36 (41), 12608–12615 (1997).
  • Nägler DK , TamW, StorerAC, KrupaJC, MortJS, MénardR. Interdependency of sequence and positional specificities for cysteine proteases of the papain family. Biochemistry.38 (15), 4868–4874 (1999).
  • Portaro FC , SantosAB, CezariMH, JulianoMA, JulianoL, CarmonaE. Probing the specificity of cysteine proteinases at subsites remote from the active site: analysis of P4, P3, P2' and P3' variations in extended substrates. Biochem. J.347Pt 1, 123–129 (2000).
  • Krupa JC , HasnainS, NäglerDK, MénardR, MortJS. S2' substrate specificity and the role of His110 and His111 in the exopeptidase activity of human cathepsin B. Biochem. J.361 (Pt 3), 613–619 (2002).
  • Berdowska I . Cysteine proteases as disease markers. Clin. Chim. Acta.342 (1–2), 41–69 (2004).
  • Felbor U , KesslerB, MothesWet al. Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc. Natl Acad. Sci. USA99 (12), 7883–7888 (2002).
  • Büth H , WoltersB, HartwigBet al. HaCaT keratinocytes secrete lysosomal cysteine proteinases during migration. Eur. J. Cell Biol.83 (11–12), 781–795 (2004).
  • Büth H , Luigi ButtigiegP, OstafeRet al. Cathepsin B is essential for regeneration of scratch-wounded normal human epidermal keratinocytes. Eur. J. Cell Biol.86 (11–12), 747–761 (2007).
  • Zhang T , MaekawaY, HanbaJet al. Lysosomal cathepsin B plays an important role in antigen processing, while cathepsin D is involved in degradation of the invariant chain inovalbumin-immunized mice. Immunology.100 (1), 13–20 (2000).
  • Hill PA , ButtleDJ, JonesSJet al. Inhibition of bone resorption by selective inactivators of cysteine proteinases. J. Cell Biochem.56 (1), 118–130 (1994).
  • Guicciardi ME , DeussingJ, MiyoshiHet al. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest.106 (9), 1127–1137 (2000).
  • Hook V , ToneffT, BogyoMet al. Inhibition of cathepsin B reduces beta-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate beta-secretase of Alzheimer's disease. Biol. Chem.386 (9), 931–940 (2005).
  • Van Acker GJD , SalujaAK, BhagatL, SinghVP, SongAM, SteerML. Cathepsin B inhibition prevents trypsinogen activation and reduces pancreatitis severity. Am. J. Physiol. Gastrointest. Liver Physiol.283 (3), G794–G800 (2002).
  • Burster T , GiffonT, DahlMEet al. Influenza A virus elevates active cathepsin B in primary murine DC. Int. Immunol.19 (5), 645–655 (2007).
  • Chandran K , SullivanNJ, FelborU, WhelanSP, CunninghamJM. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science308 (5728), 1643–1645 (2005).
  • Hashimoto Y , KakegawaH, NaritaYet al. Significance of cathepsin B accumulation in synovial fluid of rheumatoid arthritis. Biochem. Biophys. Res. Commun.283 (2), 334–339 (2001).
  • Baici A , LangA, ZwickyR, MüntenerK. Cathepsin B in osteoarthritis: uncontrolled proteolysis in the wrong place. Semin. Arthritis Rheum.34 (6 Suppl. 2), 24–28 (2005).
  • Lah TT , KosJ. Cysteine proteinases in cancer progression and their clinical relevance for prognosis. Biol. Chem.379 (2), 125–130 (1998).
  • Strojnik T , KosJ, ZidanikB, GolouhR, LahT. Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors. Clin. Cancer Res.5 (3), 559–567 (1999).
  • Kos J , StabucB, SchweigerAet al. Cathepsins B, H, and L and their inhibitors stefin A and cystatin C in sera of melanoma patients. Clin. Cancer Res.3 (10), 1815–1822 (1997).
  • Thomssen C , SchmittM, GoretzkiLet al. Prognostic value of the cysteine proteases cathepsins B and cathepsin L in human breast cancer. Clin. Cancer Res.1 (7), 741–746 (1995).
  • Strojan P , BudihnaM, SmidLet al. Prognostic significance of cysteine proteinases cathepsins B and L and their endogenous inhibitors stefins A and B in patients with squamous cell carcinoma of the head and neck. Clin. Cancer Res.6 (3), 1052–1062 (2000).
  • Lah TT , CercekM, BlejecAet al. Cathepsin B, a prognostic indicator in lymph node-negative breast carcinoma patients: comparison with cathepsin D, cathepsin L, and other clinical indicators. Clin. Cancer Res.6 (2), 578–584 (2000).
  • Levicar N , StrojnikT, KosJ, DeweyRA, PilkingtonGJ, LahTT. Lysosomal enzymes, cathepsins in brain tumour invasion. J. Neurooncol.58 (1), 21–32 (2002).
  • Roshy S , SloaneBF, MoinK. Pericellular cathepsin B and malignant progression. Cancer Metastasis Rev.22 (2–3), 271–286 (2003).
  • Yan S , SameniM, SloaneBF. Cathepsin B and human tumor progression. Biol. Chem.379 (2), 113–123 (1998).
  • Demchik LL , SameniM, NelsonK, MikkelsenT, SloaneBF. Cathepsin B and glioma invasion. Int. J. Dev. Neurosci.17 (5–6), 483–494 (1999).
  • Moin K , CaoL, DayNA, KoblinskiJE, SloaneBF. Tumor cell membrane cathepsin B. Biol Chem.379 (8–9), 1093–1099 (1997).
  • Jänicke F , PacheL, SchmittMet al. Both the cytosols and detergent extracts of breast cancer tissues are suited to evaluate the prognostic impact of the urokinase-type plasminogen activator and its inhibitor, plasminogen activator inhibitor type 1. Cancer Res.54 (10), 2527–2530 (1994).
  • Premzl A , Zavasnik-BergantV, TurkV, KosJ. Intracellular and extracellular cathepsin B facilitate invasion of MCF-10A neoT cells through reconstituted extracellular matrix in vitro. Exp. Cell Res.283 (2), 206–214 (2003).
  • Buck MR , KarustisDG, DayNA, HonnK V, SloaneBF. Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J.282 (Pt 1), 273–278 (1992).
  • Premzl A , TurkV, KosJ. Intracellular proteolytic activity of cathepsin B is associated with capillary-like tube formation by endothelial cells in vitro. J. Cell Biochem.97 (6), 1230–1240 (2006).
  • Szpaderska AM , FrankfaterA. An intracellular form of cathepsin B contributes to invasiveness in cancer. Cancer Res.61 (8), 3493–3500 (2001).
  • Baici A , MüntenerK, WillimannA, ZwickyR. Regulation of human cathepsin B by alternative mRNA splicing: homeostasis, fatal errors and cell death. Biol. Chem.387 (8), 1017–1021 (2006).
  • Berquin IM , CaoL, FongD, SloaneBF. Identification of two new exons and multiple transcription start points in the 5´-untranslated region of the human cathepsin-B-encoding gene. Gene.159 (2), 143–149 (1995).
  • Almeida PC , NantesIL, ChagasJRet al. Cathepsin B activity regulation. Heparin-like glycosaminogylcans protect human cathepsin B from alkaline pH-induced inactivation. J. Biol. Chem.276 (2), 944–951 (2001).
  • Boonen S , RosenbergE, ClaessensF, VanderschuerenD, PapapoulosS. Inhibition of cathepsin K for treatment of osteoporosis. Curr. Osteoporos Rep.10 (1), 73–79 (2012).
  • Schechter I , ZivE. Cathepsins S, B and L with aminopeptidases display β-secretase activity associated with the pathogenesis of Alzheimer's disease. Biol. Chem.392 (6), 555–569 (2011).
  • Hook VY , KindyM, HookG. Inhibitors of cathepsin B improve memory and reduce beta-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, beta-secretase site of the amyloid precursor protein. J. Biol. Chem.283 (12), 7745–7753 (2008).
  • Hook G , HookV, KindyM. The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer's disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity. J. Alzheimers Dis.26 (2), 387–408 (2011).
  • Palermo C , JoyceJA. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol. Sci.29 (1), 22–28 (2008).
  • Joyce JA , HanahanD. Multiple roles for cysteine cathepsins in cancer. Cell Cycle3 (12), 1516–1619 (2004).
  • Reinheckel T , PetersC, KrügerA, TurkB, VasiljevaO. Differential impact of cysteine cathepsins on genetic mouse models of de novo carcinogenesis: cathepsin b as emerging therapeutic target. Front. Pharmacol.3, 133  (2012).
  • Reinheckel T , DeussingJ, RothW, PetersC. Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol. Chem.382 (5), 735–741 (2001).
  • Vasiljeva O , PapazoglouA, KrügerAet al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res.66 (10), 5242–5250 (2006).
  • Withana NP , BlumG, SameniMet al. Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res.72 (5), 1199–1209 (2012).
  • Dubin G . Proteinaceous cysteine protease inhibitors. Cell Mol. Life Sci.62 (6), 653–669 (2005).
  • Keppler D . Towards novel anti-cancer strategies based on cystatin function. Cancer Lett.235 (2), 159–176 (2006).
  • Abrahamson M , BarrettAJ, SalvesenG, GrubbA. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem.261 (24), 11282–11289 (1986).
  • Abrahamson M , Alvarez-FernandezM, NathansonC-M. Cystatins. Biochem. Soc. Symp.70, 179–199 (2003).
  • Bode W , EnghR, MusilDet al. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J.7 (8), 2593–2599 (1988).
  • Alvarez-Fernandez M , BarrettAJ, GerhartzB, DandoPM, NiJ, AbrahamsonM. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem.274 (27), 19195–19203 (1999).
  • Kos J , LahTT. Role of cystatins and stefins in cancer. In : Human Stefins and Cystatins.ŽerovnikE, Kopitar-JeralaN, UverskyV (Eds). Nova Science Publisher, NY, USA , 153–165 (2006).
  • Brown WM , DziegielewskaKM. Friends and relations of the cystatin superfamily--new members and their evolution. Protein Sci.6 (1), 5–12 (1997).
  • Wallin H , BjarnadottirM, VogelLK, WasséliusJ, EkströmU, AbrahamsonM. Cystatins – extra- and intracellular cysteine protease inhibitors: high-level secretion and uptake of cystatin C in human neuroblastoma cells. Biochimie92 (11), 1625–1634 (2010).
  • Colbert JD , MatthewsSP, KosJ, WattsC. Internalization of exogenous cystatin F supresses cysteine proteases and induces the accumulation of single-chain cathepsin L by multiple mechanisms. J. Biol. Chem.286 (49), 42082–42090 (2011).
  • Wallin H , AbrahamsonM, EkströmU. Cystatin C properties crucial for uptake and inhibition of intracellular target enzymes. J. Biol. Chem.288 (23), 17019–17029 (2013).
  • Langerholc T , Zavasnik-BergantV, TurkB, TurkV, AbrahamsonM, KosJ. Inhibitory properties of cystatin F and its localization in U937 promonocyte cells. FEBS J.272 (6), 1535–1545 (2005).
  • Magister S , ObermajerN, MirkovićBet al. Regulation of cathepsins S and L by cystatin F during maturation of dendritic cells. Eur. J. Cell Biol.91 (5), 391–401 (2012).
  • Kos J , WerleB, LahT, BrunnerN. Cysteine proteinases and their inhibitors in extracellular fluids: markers for diagnosis and prognosis in cancer. Int. J. Biol. Markers.15 (1), 84–89 (2000).
  • Zore I , KrasovecM, CimermanNet al. Cathepsin B/cystatin C complex levels in sera from patients with lung and colorectal cancer. Biol. Chem.382 (5), 805–810 (2001).
  • Cox JL , SextonPS, GreenTJ, DarmaniNA. Inhibition of B16 melanoma metastasis by overexpression of the cysteine proteinase inhibitor cystatin. C. Melanoma Res.9 (4), 369–374 (1999).
  • Konduri SD , YanamandraN, SiddiqueKet al. Modulation of cystatin C expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene.21 (57), 8705–8712 (2002).
  • Kopitz C , AntonM, GansbacherB, KrügerA. Reduction of experimental human fibrosarcoma lung metastasis in mice by adenovirus-mediated cystatin C overexpression in the host. Cancer Res.65 (19), 8608–8612 (2005).
  • Huh CG , HåkanssonK, NathansonCMet al. Decreased metastatic spread in mice homozygous for a null allele of the cystatin C protease inhibitor gene. Mol. Pathol.52 (6), 332–340 (1999).
  • Butinar M , PrebandaMT, RajkovićJet al. Stefin B deficiency reduces tumor growth via sensitization of tumor cells to oxidative stress in a breast cancer model. Oncogene33 (26), 3392–3400  (2013).
  • Kos J , KrasovecM, CimermanN, NielsenHJ, ChristensenIJ, BrünnerN. Cysteine proteinase inhibitors stefin A, stefin B, and cystatin C in sera from patients with colorectal cancer: relation to prognosis. Clin. Cancer Res.6 (2), 505–511 (2000).
  • Kos J , ObermajerN, DoljakB, KocbekP, KristlJ. Inactivation of harmful tumour-associated proteolysis by nanoparticulate system. Int. J. Pharm.381 (2), 106–112 (2009).
  • Gondi CS , LakkaSS, DinhDH, OliveroWC, GujratiM, RaoJS. RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene23 (52), 8486–8496 (2004).
  • Krueger S , HaeckelC, BuehlingF, RoessnerA. Inhibitory effects of antisense cathepsin B cDNA transfection on invasion and motility in a human osteosarcoma cell line. Cancer Res.59 (23), 6010–6014 (1999).
  • Benchabane M , SchlüterU, VorsterJ, GouletM-C, MichaudD. Plant cystatins. Biochimie92 (11), 1657–1666 (2010).
  • Popović T , BrzinJ, KosJet al. A new purification procedure of human kidney cathepsin H, its properties and kinetic data. Biol. Chem. Hoppe Seyler369 (Suppl.), 175–183 (1988).
  • Hanada K , TamaiM, YamagishiM, OhmuraS, SawadaJ, TanakaI. Isolation and characterization of E 64, a new thiol protease inhibitor. Agric. Biol. Chem.42 (3), 523–528 (1978).
  • Sabotič J , KosJ. Microbial and fungal protease inhibitors--current and potential applications. Appl. Microbiol. Biotechnol.93 (4), 1351–1375 (2012).
  • Mirković B , PremzlA, HodnikVet al. Regulation of cathepsin B activity by 2A2 monoclonal antibody. FEBS J.276 (17), 4739–4751 (2009).
  • Fan X , Kopitar-JeralaN, PremzlA, BestagnoM, BurroneO, KosJ. Molecular cloning and chimerisation of an inhibitory anti-cathepsin B antibody and its expression in Chinese hamster ovary cells. Biol. Chem.383 (11), 1817–1820 (2002).
  • Frlan R , GobecS. Inhibitors of cathepsin B. Curr. Med. Chem.13 (19), 2309–2327 (2006).
  • Otto H-H , SchirmeisterT. Cysteine proteases and their inhibitors. Chem Rev.97 (1), 133–172 (1997).
  • Murata M , MiyashitaS, YokooCet al. Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B, in vitro. FEBS Lett.280 (2), 307–310 (1991).
  • Buttle DJ , MurataM, KnightCG, BarrettAJ. CA074 methyl ester: a proinhibitor for intracellular cathepsin B. Arch. Biochem. Biophys.299 (2), 377–380 (1992).
  • Greenbaum D , MedzihradszkyKF, BurlingameA, BogyoM. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol.7 (8), 569–581 (2000).
  • Bogyo M , VerhelstS, Bellingard-DubouchaudV, TobaS, GreenbaumD. Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chem. Biol.7 (1), 27–38 (2000).
  • Smith J , SimonsC. Cathepsins. In : Proteinase and Peptidase Inhibition: Recent Potential Targets for Drug Development. Taylor & Francis, NY, USA, 84–126 (2002).
  • Greenspan PD , ClarkKL, TommasiRAet al. Identification of dipeptidyl nitriles as potent and selective inhibitors of cathepsin B through structure-based drug design. J. Med. Chem.44 (26), 4524–4534 (2001).
  • Frizler M , StirnbergM, SisayMT, GütschowM. Development of nitrile-based peptidic inhibitors of cysteine cathepsins. Curr. Top. Med. Chem.10 (3), 294–322 (2010).
  • Frizler M , MertensMD, GütschowM. Fluorescent nitrile-based inhibitors of cysteine cathepsins. Bioorg. Med. Chem. Lett.22 (24), 7715–7718 (2012).
  • Löser R , BergmannR, FrizlerMet al. Synthesis and radiopharmacological characterisation of a fluorine-18-labelled azadipeptide nitrile as a potential PET tracer for in vivo imaging of cysteine cathepsins. Chem. Med. Chem.8 (8), 1330–1344 (2013).
  • Fustero S , RodrigoV, Sánchez-RosellóMet al. New cathepsin inhibitors to explore the fluorophilic properties of the S2 pocket of cathepsin B: design, synthesis, and biological evaluation. Chemistry17 (19), 5256–5260 (2011).
  • Frizler M , LohrF, FurtmannN, KläsJ, GütschowM. Structural optimization of azadipeptide nitriles strongly increases association rates and allows the development of selective cathepsin inhibitors. J. Med. Chem.54 (1), 396–400 (2011).
  • Pan X , TanN, ZengG, ZhangY, JiaR. Amentoflavone and its derivatives as novel natural inhibitors of human cathepsin B. Bioorg. Med. Chem.13 (20), 5819–5825 (2005).
  • Zeng G-Z , PanX-L, TanN-H, XiongJ, ZhangY-M. Natural biflavones as novel inhibitors of cathepsin B and K. Eur. J. Med. Chem.41 (11), 1247–1252 (2006).
  • Schenker P , AlfaranoP, KolbP, CaflischA, BaiciA. A double-headed cathepsin B inhibitor devoid of warhead. Protein Sci.17 (12), 2145–2155 (2008).
  • Sosič I , MirkovićB, TurkS, ŠtefanebB, KosJ, GobecS. Discovery and kinetic evaluation of 6-substituted 4-benzylthio-1,3,5-triazin-2(1H)-ones as inhibitors of cathepsin B. Eur. J. Med. Chem.46 (9), 4648–4656 (2011).
  • Mirković B , RenkoM, TurkSet al. Novel mechanism of cathepsin B inhibition by antibiotic nitroxoline and related compounds. Chem. Med. Chem.6 (8), 1351–1356 (2011).
  • Sosič I , MirkovićB, ArenzK, StefaneB, KosJ, GobecS. Development of new cathepsin B inhibitors: combining bioisosteric replacements and structure-based design to explore the structure-activity relationships of nitroxoline derivatives. J. Med. Chem.56 (2), 521–533 (2013).
  • Shim JS , MatsuiY, BhatSet al. Effect of nitroxoline on angiogenesis and growth of human bladder cancer. J. Natl Cancer Inst.102 (24), 1855–1873 (2010).
  • Kljun J , BratsosI, AlessioEet al. New uses for old drugs: attempts to convert quinolone antibacterials into potential anticancer agents containing ruthenium. Inorg. Chem.52 (15), 9039–9052 (2013).
  • Hudej R , KljunJ, KandiollerWet al. Synthesis and biological evaluation of the thionated antibacterial agent nalidixic acid and its organoruthenium (II) complex. Organometallics31, 5867–5874 (2012).
  • Bruchard M , MignotG, DerangèreVet al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med.19 (1), 57–64 (2013).
  • Shao L-H , LiuS-P, HouJ-Xet al. Cathepsin B cleavable novel prodrug Ac-Phe-Lys-PABC-ADM enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis: an experimental study. Cancer118 (11), 2986–2996 (2012).
  • Liang L , LinS-W, DaiWet al. Novel cathepsin B-sensitive paclitaxel conjugate: Higher water solubility, better efficacy and lower toxicity. J. Control Release160 (3), 618–629 (2012).
  • Barthel BL , RudnickiDL, KirbyTP, ColvinSM, BurkhartDJ, KochTH. Synthesis and biological characterization of protease-activated prodrugs of doxazolidine. J. Med. Chem.55 (14), 6595–6607 (2012).
  • Barrett AJ , RawlingsND, DaviesME, MachleidtW, SalvesenG, TurkV. Cysteine proteinase inhibitors of the cystatin superfamily. In : Proteinase Inhibitors.BarrettAJ, SalvesenG ( Eds .). Elsevier, Amsterdam, The Netherlands, 515–569 (1986).
  • Ni J , AbrahamsonM, ZhangMet al. Cystatin E is a novel human cysteine proteinase inhibitor with structural resemblance to family 2 cystatins. J. Biol. Chem.272 (16), 10853–10858 (1997).
  • Abrahamson M . Cystatins. Methods Enzymol.244, 685–700 (1994).
  • Liu N , RajaSM, ZazzeroniFet al. NF-kappaB protects from the lysosomal pathway of cell death. EMBO J.22 (19), 5313–5322 (2003).
  • Barrett AJ . Alpha 2-macroglobulin. Methods Enzymol.80Pt C, 737–754 (1981).
  • Nakao Y , FujitaM, WarabiK, MatsunagaS, FusetaniN. Miraziridine A, a novel cysteine protease inhibitor from the marine sponge Theonella aff. mirabilis 1. J. Am. Chem. Soc.122 (42),  10462–10463  (2000).
  • Fusetani N , FujitaM, NakaoY, MatsunagaS, Van SoestRW. Tokaramide A, a new cathepsin B inhibitor from the marine sponge Theonella aff. mirabilis. Bioorg. Med. Chem. Lett.9 (24), 3397–3402 (1999).
  • Schultz RM , Varma-NelsonP, OrtizRet al. Active and inactive forms of the transition-state analog protease inhibitor leupeptin: explanation of the observed slow binding of leupeptin to cathepsin B and papain. J. Biol. Chem.264 (3), 1497–1507 (1989).
  • Teramura K , OritaM, MatsumotoH, YasumuroK, AbeK. Effects of YM-51084 and YM-51085, new inhibitors produced by Streptomyces sp. Q21705, on cathepsin L. J. Enzyme. Inhib.11 (2), 115–121 (1996).
  • Brzin J , RogeljB, PopovicT, StrukeljB, RitonjaA. Clitocypin, a new type of cysteine proteinase inhibitor from fruit bodies of mushroom clitocybe nebularis. J. Biol. Chem.275 (26), 20104–20109 (2000).
  • Sabotic J , PopovicT, PuizdarV, BrzinJ. Macrocypins, a family of cysteine protease inhibitors from the basidiomycete Macrolepiota procera. FEBS J.276 (16), 4334–4345 (2009).
  • Martichonok V , PlouffeC, StorerAC, MénardR, JonesJB. Aziridine analogs of as inhibitors of cysteine proteases. J. Med. Chem.38 (16), 3078–3085 (1995).
  • Leung-Toung R , WodzinskaJ, LiWet al. 1,2,4-thiadiazole: a novel cathepsin B inhibitor. Bioorg. Med. Chem.11 (24), 5529–5537 (2003).
  • Krantz A , CoppLJ, ColesPJ, SmithRA, HeardSB. Peptidyl (acyloxy)methyl ketones and the quiescent affinity label concept: the departing group as a variable structural element in the design of inactivators of cysteine proteinases. Biochemistry30 (19), 4678–4687 (1991).
  • Albeck A , KliperS. Mechanism of cysteine protease inactivation by peptidyl epoxides. Biochem J.322 (Pt 3), 879–884 (1997).
  • Palmer JT , RasnickD, KlausJL, BrömmeD. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem.38 (17), 3193–3196 (1995).
  • Jacobsen W , ChristiansU, BenetLZ. In vitro evaluation of the disposition of A novel cysteine protease inhibitor. Drug Metab Dispos.28 (11), 1343–1351 (2000).
  • Hu LY , AbelesRH. Inhibition of cathepsin B and papain by peptidyl alpha-keto esters, alpha-keto amides, alpha-diketones, and alpha-keto acids. Arch. Biochem. Biophys.281 (2), 271–274 (1990).
  • Graybill TL , RossMJ, GauvinBRet al. Synthesis and evaluation of azapeptide-derived inhibitors of serine and cysteine proteases. Bioorg. Med. Chem. Lett.2 (11), 1375–1380 (1992).
  • Smith RA , ColesPJ, SpencerRW, CoppLJ, JonesCS, KrantzA. Peptidyl O-acyl hydroxamates: potent new inactivators of cathepsin B. Biochem. Biophys Res. Commun.155 (3), 1201–1206 (1988).
  • Zhou NE , GuoD, ThomasGet al. 3-Acylamino-azetidin-2-one as a novel class of cysteine proteases inhibitors. Bioorg. Med. Chem. Lett.13 (1), 139–141 (2003).
  • Cunha RLOR , UranoME, ChagasJRet al. Tellurium-based cysteine protease inhibitors: evaluation of novel organotellurium(IV) compounds as inhibitors of human cathepsin B. Bioorg. Med. Chem. Lett.15 (3), 755–760 (2005).
  • Lim IT , MerouehSO, LeeM, HeegMJ, MobasheryS. Strategy in inhibition of cathepsin B, a target in tumor invasion and metastasis. J. Am. Chem. Soc.126 (33), 10271–10277 (2004).
  • McConnell RM , YorkJL, FrizzellD, EzellC. Inhibition studies of some serine and thiol proteinases by new leupeptin analogues. J. Med. Chem.36 (8), 1084–1089 (1993).
  • Smith RA , CoppLJ, DonnellySL, SpencerRW, KrantzA. Inhibition of cathepsin B by peptidyl aldehydes and ketones: slow-binding behavior of a trifluoromethyl ketone. Biochemistry27 (17), 6568–6573 (1988).
  • Li Z , PatilGS, GolubskiZEet al. Peptide alpha-keto ester, alpha-keto amide, and alpha-keto acid inhibitors of calpains and other cysteine proteases. J. Med. Chem.36 (22), 3472–3480 (1993).
  • Lynas JF , HawthorneSJ, WalkerB. Development of peptidyl alpha-keto-beta-aldehydes as new inhibitors of cathepsin L – comparisons of potency and selectivity profiles with cathepsin B. Bioorg. Med. Chem. Lett.10 (15), 1771–1773 (2000).
  • Bincoletto C , TersariolILS, OliveiraCRet al. Chiral cyclopalladated complexes derived from N, N-dimethyl-1-phenethylamine with bridging bis(diphenylphosphine)ferrocene ligand as inhibitors of the cathepsin B activity and as antitumoral agents. Bioorg. Med. Chem.13 (8), 3047–3055 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.