3,340
Views
0
CrossRef citations to date
0
Altmetric
Review

Open Access Chemical Probes for Epigenetic Targets

&
Pages 1901-1917 | Published online: 23 Sep 2015

References

  • Holliday R . Epigenetics: a historical overview. Epigenetics1 (2), 76–80 (2006).
  • Wongtrakoongate P . Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries. World J. Stem Cells7 (1), 137–148 (2015).
  • Lin S , GregoryRI. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer15 (6), 321–333 (2015).
  • Devaux Y , ZangrandoJ, SchroenBet al. Long noncoding RNAs in cardiac development and ageing. Nat. Rev. Cardiol. doi:10.1038/nrcardio.2015.55 (2015) ( Epub ahead of print).
  • Velagapudi SP , VummidiBR, DisneyMD. Small molecule chemical probes of microRNA function. Curr. Opin. Chem. Biol.24, 97–103 (2015).
  • Tessarz P , KouzaridesT. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol.15 (11), 703–708 (2014).
  • Muller S , BrownPJ. Epigenetic chemical probes. Clin. Pharmacol. Ther.92 (6), 689–693 (2012).
  • Zwergel C , ValenteS, JacobC, MaiA. Emerging approaches for histone deacetylase inhibitor drug discovery. Expert Opin. Drug Discov.10 (6), 599–613 (2015).
  • Castronovo V , PeixotoP, BellahceneA, TurtoiA. Histone deacetylases and cancer-associated angiogenesis: current understanding of the biology and clinical perspectives. Crit. Rev. Oncog.20 (1–2), 119–137 (2015).
  • Filippakopoulos P , PicaudS, MangosMet al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell149 (1), 214–231 (2012).
  • Filippakopoulos P , KnappS. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov.13 (5), 337–356 (2014).
  • Weiss WA , TaylorSS, ShokatKM. Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nat. Chem. Biol.3 (12), 739–744 (2007).
  • Frye SV . The art of the chemical probe. Nat. Chem. Biol.6 (3), 159–161 (2010).
  • Workman P , CollinsI. Probing the probes: fitness factors for small molecule tools. Chem. Biol.17 (6), 561–577 (2010).
  • Bunnage ME . Getting pharmaceutical R&D back on target. Nat. Chem. Biol.7 (6), 335–339 (2011).
  • SGC . Epigenetics Probes Collection. www.thesgc.org/chemical-probes/epigenetics
  • CEREP . ExpresSProfile. www.cerep.fr/cerep/users/pages/catalog/profiles/detailprofile.asp?profile=2117
  • Weigelt J . The case for open-access chemical biology. A strategy for pre-competitive medicinal chemistry to promote drug discovery. EMBO Rep.10 (9), 941–945 (2009).
  • Edwards AM , BountraC, KerrDJ, WillsonTM. Open access chemical and clinical probes to support drug discovery. Nat. Chem. Biol.5 (7), 436–440 (2009).
  • National Cancer Institute . NCI Drug Dictionary. http://www.cancer.gov/publications/dictionaries/cancer-drug.
  • Berkovits BD , WolgemuthDJ. The role of the double bromodomain-containing BET genes during mammalian spermatogenesis. Curr. Top. Dev. Biol.102, 293–326 (2013).
  • Chung CW . Small molecule bromodomain inhibitors: extending the druggable genome. Prog. Med. Chem.51, 1–55 (2012).
  • Filippakopoulos P , KnappS. The bromodomain interaction module. FEBS Lett.586 (17), 2692–2704 (2012).
  • Muller S , FilippakopoulosP, KnappS. Bromodomains as therapeutic targets. Expert Rev. Mol. Med.13, e29 (2011).
  • Sanchez R , MeslamaniJ, ZhouMM. The bromodomain: from epigenome reader to druggable target. Biochim. Biophys. Acta1839 (8), 676–685 (2014).
  • Shi J , VakocCR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol. Cell54 (5), 728–736 (2014).
  • Huang B , YangXD, ZhouMM, OzatoK, ChenLF. Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Mol. Cell. Biol.29 (5), 1375–1387 (2009).
  • Stewart HJ , HorneGA, BastowS, ChevassutTJ. BRD4 associates with p53 in DNMT3A-mutated leukemia cells and is implicated in apoptosis by the bromodomain inhibitor JQ1. Cancer Med.2 (6), 826–835 (2013).
  • Asangani IA , DommetiVL, WangXet al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature510 (7504), 278–282 (2014).
  • Palermo RD , WebbHM, WestMJ. RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus. PLoS Pathog.7 (10), e1002334 (2011).
  • Gupta SS , MaetzigT, MaertensGNet al. Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration. J. Virol.87 (23), 12721–12736 (2013).
  • Wang X , HelferCM, PancholiN, BradnerJE, YouJ. Recruitment of Brd4 to the human papillomavirus type 16 DNA replication complex is essential for replication of viral DNA. J. Virol.87 (7), 3871–3884 (2013).
  • Anders L , GuentherMG, QiJet al. Genome-wide localization of small molecules. Nat. Biotechnol.32 (1), 92–96 (2014).
  • Winter GE , BuckleyDL, PaulkJet al. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science348 (6241), 1376–1381 (2015).
  • Muller S , LingardH, KnappS. Selective Targeting of Protein Interactions Mediated by BET Bromodomains.Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2014).
  • Fu LL , TianM, LiXet al. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery. Oncotarget6 (8), 5501–5516 (2015).
  • Brand M , MeasuresAM, WilsonBGet al. Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem. Biol.10 (1), 22–39 (2015).
  • Gallenkamp D , GelatoKA, HaendlerB, WeinmannH. Bromodomains and their pharmacological inhibitors. ChemMedChem9 (3), 438–464 (2014).
  • Tang Y , GholaminS, SchubertSet al. Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat. Med.20 (7), 732–740 (2014).
  • Kalkhoven E . CBP and p300: HATs for different occasions. Biochem. Pharmacol.68 (6), 1145–1155 (2004).
  • Philpott M , YangJ, TumberTet al. Bromodomain-peptide displacement assays for interactome mapping and inhibitor discovery. Mol. Biosyst.7 (10), 2899–2908 (2011).
  • Hay DA , FedorovO, MartinSet al. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J. Am. Chem. Soc.136 (26), 9308–9319 (2014).
  • Das C , RoyS, NamjoshiSet al. Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation. Proc. Natl Acad. Sci. USA111 (12), E1072–E1081 (2014).
  • Giotopoulos G , ChanWI, HortonSJet al. The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia. Oncogene doi:10.1038/onc.2015.92 (2015) ( Epub ahead of print).
  • Thanasopoulou A , DumreseK, PicaudS, FedorovO, KnappS, SchwallerJ. Targeting aberrant self-renewal of leukemic cells with a novel CBP/p300 bromodomain inhibitor. Blood124 (21), 3750–3750 (2014).
  • Hammitzsch A , TallantC, FedorovOet al. CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc. Natl Acad. Sci. USA112 (34), 10763–10773 (2015).
  • Roe JS , MercanF, RiveraK, PappinDJ, VakocCR. BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol. Cell doi:10.1016/j.molcel.2015.04.011 (2015) ( Epub ahead of print).
  • Son EY , CrabtreeGR. The role of BAF (mSWI/SNF) complexes in mammalian neural development. Am. J. Med. Genet. C Semin. Med. Genet.166C (3), 333–349 (2014).
  • Middeljans E , WanX, JansenPW, SharmaV, StunnenbergHG, LogieC. SS18 together with animal-specific factors defines human BAF-type SWI/SNF complexes. PLoS ONE7 (3), e33834 (2012).
  • Helming KC , WangX, RobertsCW. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell26 (3), 309–317 (2014).
  • Benusiglio PR , CouveS, Gilbert-DussardierBet al. A germline mutation in PBRM1 predisposes to renal cell carcinoma. J. Med. Genet.52 (6), 426–430 (2015).
  • Kim JY , LeeSH, MoonKCet al. The impact of PBRM1 expression on prognostic and predictive marker in metastatic renal cell carcinoma. J. Urol. doi:10.1016/j.juro.2015.04.114 (2015) ( Epub ahead of print).
  • Hohmann AF , VakocCR. A rationale to target the SWI/SNF complex for cancer therapy. Trends Genet.30 (8), 356–363 (2014).
  • Scotto L , NarayanG, NandulaSVet al. Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha. Mol. Cancer7, 58 (2008).
  • Chiu YH , LeeJY, CantleyLC. BRD7, a tumor suppressor, interacts with p85alpha and regulates PI3K activity. Mol. Cell54 (1), 193–202 (2014).
  • Clark PG , VieiraLC, TallantCet al. LP99: discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor. Angew. Chem. Int. Ed. Engl.54 (21), 6217–6221 (2015).
  • Drost J , MantovaniF, ToccoFet al. BRD7 is a candidate tumour suppressor gene required for p53 function. Nat. Cell Biol.12 (4), 380–389 (2010).
  • SGC . BI-9564 – a chemical probe for BRD9 and BRD7. www.thesgc.org/chemical-probes/bi-9564.
  • Theodoulou NH , BamboroughP, BannisterAJet al. Discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition. J. Med. Chem. doi:10.1021/acs.jmedchem.5b00256 (2015) ( Epub ahead of print).
  • Medzhitov R , HorngT. Transcriptional control of the inflammatory response. Nat. Rev. Immunol.9 (10), 692–703 (2009).
  • SGC . www.thesgc.org/chemical-probes/pfi-3.
  • Fedorov O , CastexJ, TallantCet al. Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cells maintenance. Science Advances (2015) ( In Press).
  • Avvakumov N , CoteJ, The MYST family cancer of histone acetyltransferases and their intimate links to cancer. Oncogene26 (7), 5395–5407 (2007).
  • Paggetti J , LargeotA, AucagneRet al. Crosstalk between leukemia-associated proteins MOZ and MLL regulates HOX gene expression in human cord blood CD34+ cells. Oncogene29 (36), 5019–5031 (2010).
  • Sheikh BN , DownerNL, PhipsonBet al. MOZ and BMI1 play opposing roles during Hox gene activation in ES cells and in body segment identity specification in vivo. Proc. Natl Acad. Sci. USA112 (17), 5437–5442 (2015).
  • Laue K , DaujatS, CrumpJGet al. The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity. Development135 (11), 1935–1946 (2008).
  • You L , YanK, ZhouJet al. The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors. PLoS Genet.11 (3), e1005034 (2015).
  • Mishima Y , WangC, MiyagiSet al. Histone acetylation mediated by Brd1 is crucial for Cd8 gene activation during early thymocyte development. Nat. Commun.5, 5872 (2014).
  • Mishima Y , MiyagiS, SarayaAet al. The Hbo1-Brd1/Brpf2 complex is responsible for global acetylation of H3K14 and required for fetal liver erythropoiesis. Blood118 (9), 2443–2453 (2011).
  • SGC . OF-1 – a chemical probe for BRPF bromodomains. www.thesgc.org/chemical-probes/of-1
  • SGC . NI-57 – a chemical probe for BRPF bromodomains. www.thesgc.org/chemical-probes/ni-57
  • SGC . PFI-4 – a chemical probe for BRPF1B. www.thesgc.org/chemical-probes/pfi-4
  • Bennett J , FedorovO, TallantCet al. Discovery of a chemical tool inhibitor targeting the bromodomains of TRIM24 and BRPF. J. Med. Chem. doi:10.1021/acs.jmedchem.5b00458 (2015) ( Epub ahead of print).
  • Palmer WS , Poncet-MontangeG, LiuGet al. Structure-guided design of IACS-9571, a selective high-affinity dual TRIM24-BRPF1 bromodomain inhibitor. J. Med. Chem. doi:10.1021/acs.jmedchem.5b00405 (2015) ( Epub ahead of print).
  • Kruidenier L , ChungCW, ChengZet al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature488 (7411), 404–408 (2012).
  • SGC . GSK-J1: an inhibitor for human H3K27me3 and H3K4me3/2/1 demethylases. www.thesgc.org/chemical-probes/gskj1.
  • Swigut T , WysockaJ. H3K27 demethylases, at long last. Cell131 (1), 29–32 (2007).
  • Liu Z , CaoW, XuLet al. The histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation. J. Mol. Cell. Biol. doi:10.1093/jmcb/mjv022 (2015) ( Epub ahead of print).
  • Messer HG , JacobsD, DhummakuptA, BloomDC. Inhibition of H3K27me3-specific histone demethylases JMJD3 and UTX blocks reactivation of herpes simplex virus 1 in trigeminal ganglion neurons. J. Virol.89 (6), 3417–3420 (2015).
  • Ntziachristos P , TsirigosA, WelsteadGGet al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature514 (7523), 513–517 (2014).
  • Hashizume R , AndorN, IharaYet al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat. Med.20 (12), 1394–1396 (2014).
  • Grasso CS , TangY, TruffauxNet al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med.21 (6), 555–559 (2015).
  • Kubicek S , O’SullivanRJ, AugustEMet al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell25 (3), 473–481 (2007).
  • Vedadi M , Barsyte-LovejoyD, LiuFet al. A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat. Chem. Biol.7 (8), 566–574 (2011).
  • Liu F , Barsyte-LovejoyD, LiFet al. Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP. J. Med. Chem.56 (21), 8931–8942 (2013).
  • Ling BM , GopinadhanS, KokWKet al. G9a mediates Sharp-1-dependent inhibition of skeletal muscle differentiation. Mol. Biol. Cell23 (24), 4778–4785 (2012).
  • Ohno H , ShinodaK, OhyamaK, SharpLZ, KajimuraS. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature504 (7478), 163–167 (2013).
  • Lehnertz B , PabstC, SuLet al. The methyltransferase G9a regulates HoxA9-dependent transcription in AML. Genes Dev.28 (4), 317–327 (2014).
  • Sweis RF , PliushchevM, BrownPJet al. Discovery and development of potent and selective inhibitors of histone methyltransferase g9a. ACS Med. Chem. Lett.5 (2), 205–209 (2014).
  • Mcginty RK , KimJ, ChatterjeeC, RoederRG, MuirTW. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature453 (7196), 812–816 (2008).
  • Yu W , SmilD, LiFet al. Bromo-deaza-SAH: a potent and selective DOT1L inhibitor. Bioorg. Med. Chem.21 (7), 1787–1794 (2013).
  • Daigle SR , OlhavaEJ, TherkelsenCAet al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell20 (1), 53–65 (2011).
  • Basavapathruni A , JinL, DaigleSRet al. Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L. Chem. Biol. Drug Des.80 (6), 971–980 (2012).
  • Yu W , ChoryEJ, WernimontAKet al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat. Commun.31288 (2012).
  • Wigle TJ , KnutsonSK, JinLet al. The Y641C mutation of EZH2 alters substrate specificity for histone H3 lysine 27 methylation states. FEBS Lett.585 (19), 3011–3014 (2011).
  • Verma SK , TianX, LafranceLVet al. Identification of potent, selective, cell-active inhibitors of the histone lysine methyltransferase EZH2. ACS Med. Chem. Lett.3 (12), 1091–1096 (2012).
  • Knutson SK , WigleTJ, WarholicNMet al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat. Chem. Biol.8 (11), 890–896 (2012).
  • Konze KD , MaA, LiFet al. An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1. ACS Chem. Biol.8 (6), 1324–1334 (2013).
  • Campaner S , SpreaficoF, BurgoldTet al. The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol. Cell43 (4), 681–688 (2011).
  • Liu X , WangD, ZhaoYet al. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc. Natl Acad. Sci. USA108 (5), 1925–1930 (2011).
  • Oudhoff MJ , FreemanSA, CouzensALet al. Control of the hippo pathway by Set7-dependent methylation of Yap. Dev. Cell26 (2), 188–194 (2013).
  • Barsyte-Lovejoy D , LiF, OudhoffMJet al. (R)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells. Proc. Natl Acad. Sci. USA111 (35), 12853–12858 (2014).
  • Cho H , HerzkaT, ZhengWet al. RapidCaP, a novel GEM model for metastatic prostate cancer analysis and therapy, reveals myc as a driver of Pten-mutant metastasis. Cancer Discov.4 (3), 318–333 (2014).
  • Saddic LA , WestLE, AslanianAet al. Methylation of the retinoblastoma tumor suppressor by SMYD2. J. Biol. Chem.285 (48), 37733–37740 (2010).
  • Huang J , Perez-BurgosL, PlacekBJet al. Repression of p53 activity by Smyd2-mediated methylation. Nature444 (7119), 629–632 (2006).
  • Ferguson AD , LarsenNA, HowardTet al. Structural basis of substrate methylation and inhibition of SMYD2. Structure19 (9), 1262–1273 (2011).
  • Nguyen H , Allali-HassaniA, AntonysamySet al. LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2. J. Biol. Chem.290 (22), 13641–13653 (2015).
  • Kaniskan HU , SzewczykMM, YuZet al. A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3). Angew. Chem. Int. Ed. Engl.54 (17), 5166–5170 (2015).
  • James LI , Barsyte-LovejoyD, ZhongNet al. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nat. Chem. Biol.9 (3), 184–191 (2013).
  • Senisterra G , WuH, Allali-HassaniAet al. Small-molecule inhibition of MLL activity by disruption of its interaction with WDR5. Biochem. J.449 (1), 151–159 (2013).
  • Grebien F , VedadiM, GetlikMet al. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPalpha N-terminal leukemia. Nat. Chem. Biol.11 (8), 571–578 (2015).