270
Views
0
CrossRef citations to date
0
Altmetric
Review

Triple Reuptake Inhibitors as Potential Next-Generation Antidepressants: A New Hope?

, &
Pages 2385-2406 | Published online: 30 Nov 2015

References

  • Belmaker RH , AgamG. Major depressive disorder. N. Engl. J. Med.358 (1), 55–68 (2008).
  • American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders ((4th Edition)). American Psychiatric Association, Washington, DC, USA (2000).
  • Gold PW , ChrousosGP. The endocrinology of melancholic and atypical depression: relation to neurocircuitry and somatic consequences. Proc. Assoc. Am. Physicians111 (1), 22–34 (1999).
  • Millan MJ . Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs. Neurotherapeutics6 (1), 53–77 (2009).
  • Whiteford HA , DegenhardtL, RehmJet al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet382 (9904), 1575–1586 (2013).
  • Blendy JA . The role of CREB in depression and antidepressant treatment. Biol. Psychiatry59 (12), 1144–1150 (2006).
  • Shimon H , AgamG, BelmakerRH, HydeTM, KleinmanJE. Reduced frontal cortex inositol levels in postmortem brain of suicide victims and patients with bipolar disorder. Am. J. Psychiatry154 (8), 1148–1150 (1997).
  • Coupland NJ , OgilvieCJ, HegadorenKM, SeresP, HanstockCC, AllenPS. Decreased prefrontal myo-inositol in major depressive disorder. Biol. Psychiatry57 (12), 1526–1534 (2005).
  • Coppen A . The biochemistry of affective disorders. Br. J. Psychiatry113 (504), 1237–1264 (1967).
  • Hensler JG . Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci.72 (15), 1665–1682 (2003).
  • Linnoila M , VirkkunenM, ScheininM, NuutilaA, RimonR, GoodwinFK. Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci.33 (26), 2609–2614 (1983).
  • Handley SL . 5-Hydroxytryptamine pathways in anxiety and its treatment. Pharmacol. Ther.66 (1), 103–148 (1995).
  • Morilak DA , FrazerA. Antidepressants and brain monoaminergic systems: a dimensional approach to understanding their behavioural effects in depression and anxiety disorders. Int. J. Neuropsychopharmacol.7 (2), 193–218 (2004).
  • Racagni G , BrunelloN. Physiology to functionality: the brain and neurotransmitter activity. Int. Clin. Psychopharmacol.14 (Suppl. 1), S3–S7 (1999).
  • Sanacora G , ZarateCA, KrystalJH, ManjiHK. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat. Rev. Drug Discov.7 (5), 426–437 (2008).
  • Hasler G , Van Der VeenJW, TumonisT, MeyersN, ShenJ, DrevetsWC. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry64 (2), 193–200 (2007).
  • Lewy AJ , LeflerBJ, EmensJS, BauerVK. The circadian basis of winter depression. Proc. Natl Acad. Sci. USA103 (19), 7414–7419 (2006).
  • Beasley CL , HonerWG, BergmannK, FalkaiP, LutjohannD, BayerTA. Reductions in cholesterol and synaptic markers in association cortex in mood disorders. Bipolar Disord.7 (5), 449–455 (2005).
  • Bymaster FP , FelderCC. Role of the cholinergic muscarinic system in bipolar disorder and related mechanism of action of antipsychotic agents. Mol. Psychiatry7 (Suppl. 1), S57–S63 (2002).
  • Kennedy SE , KoeppeRA, YoungEA, ZubietaJK. Dysregulation of endogenous opioid emotion regulation circuitry in major depression in women. Arch. Gen. Psychiatry63 (11), 1199–1208 (2006).
  • Sullivan GM , MannJJ, OquendoMA, LoES, CooperTB, GormanJM. Low cerebrospinal fluid transthyretin levels in depression: correlations with suicidal ideation and low serotonin function. Biol. Psychiatry60 (5), 500–506 (2006).
  • Aan Het Rot M , ZarateCAJr, CharneyDS, MathewSJ. Ketamine for depression: where do we go from here?Biol. Psychiatry72 (7), 537–547 (2012).
  • Berman RM , CappielloA, AnandAet al. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry47 (4), 351–354 (2000).
  • Hediger MA , RomeroMF, PengJB, RolfsA, TakanagaH, BrufordEA. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins introduction. Pflugers Arch.447 (5), 465–468 (2004).
  • Guastella J , NelsonN, NelsonHet al. Cloning and expression of a rat brain GABA transporter. Science249 (4974), 1303–1306 (1990).
  • Hoffman BJ , MezeyE, BrownsteinMJ. Cloning of a serotonin transporter affected by antidepressants. Science254 (5031), 579–580 (1991).
  • Kilty JE , LorangD, AmaraSG. Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science254 (5031), 578–579 (1991).
  • Pacholczyk T , BlakelyRD, AmaraSG. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature350 (6316), 350–354 (1991).
  • Bismuth Y , KavanaughMP, KannerBI. Tyrosine 140 of the gamma-aminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. J. Biol. Chem.272 (26), 16096–16102 (1997).
  • Kitayama S , ShimadaS, XuH, MarkhamL, DonovanDM, UhlGR. Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc. Natl Acad. Sci. USA89 (16), 7782–7785 (1992).
  • Chen JG , RudnickG. Permeation and gating residues in serotonin transporter. Proc. Natl Acad. Sci. USA97 (3), 1044–1049 (2000).
  • Yamashita A , SinghSK, KawateT, JinY, GouauxE. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature437 (7056), 215–223 (2005).
  • Zhou Z , ZhenJ, KarpowichNKet al. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science317 (5843), 1390–1393 (2007).
  • Singh SK , YamashitaA, GouauxE. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature448 (7156), 952–956 (2007).
  • Singh SK , PiscitelliCL, YamashitaA, GouauxE. A competitive inhibitor traps LeuT in an open-to-out conformation. Science322 (5908), 1655–1661 (2008).
  • Zhou Z , ZhenJ, KarpowichNK, LawCJ, ReithME, WangDN. Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat. Struct. Mol. Biol.16 (6), 652–657 (2009).
  • Krishnamurthy H , GouauxE. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature481 (7382), 469–474 (2012).
  • Kristensen AS , AndersenJ, JorgensenTNet al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev.63 (3), 585–640 (2011).
  • Ban TA . The role of serendipity in drug discovery. Dialogues Clin. Neurosci.8 (3), 335–344 (2006).
  • Shulman KI , HerrmannN, WalkerSE. Current place of monoamine oxidase inhibitors in the treatment of depression. CNS Drugs27 (10), 789–797 (2013).
  • Deftereos SN , DodouE, AndronisC, PersidisA. From depression to neurodegeneration and heart failure: re-examining the potential of MAO inhibitors. Expert Rev. Clin. Pharmacol.5 (4), 413–425 (2012).
  • Rose JB . Tricyclic antidepressant toxicity. Clin. Toxicol.11 (4), 391–402 (1977).
  • Spinks D , SpinksG. Serotonin reuptake inhibition: an update on current research strategies. Curr. Med. Chem.9 (8), 799–810 (2002).
  • Wong DT , BymasterFP. Development of antidepressant drugs. Fluoxetine (prozac) and other selective serotonin uptake inhibitors. Adv. Exp. Med. Biol.363, 77–95 (1995).
  • Hiemke C , HartterS. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol. Ther.85 (1), 11–28 (2000).
  • Owens MJ , NemeroffCB. The serotonin transporter and depression. Depress. Anxiety8 (Suppl. 1), 5–12 (1998).
  • Di Giovanni G , EspositoE, Di MatteoV. Role of serotonin in central dopamine dysfunction. CNS Neurosci. Ther.16 (3), 179–194 (2010).
  • Wenthur CJ , BennettMR, LindsleyCW. Classics in chemical neuroscience: fluoxetine (prozac). ACS Chem. Neurosci.5 (1), 14–23 (2014).
  • Danish University Antidepressant Group . Citalopram: clinical effect profile in comparison with clomipramine. A controlled multicenter study. Psychopharmacology (Berl.)90 (1), 131–138 (1986).
  • Thase ME , EntsuahAR, RudolphRL. Remission rates during treatment with venlafaxine or selective serotonin reuptake inhibitors. Br. J. Psychiatry178, 234–241 (2001).
  • Nemeroff CB , EntsuahR, BenattiaI, DemitrackM, SloanDM, ThaseME. Comprehensive analysis of remission (COMPARE) with venlafaxine versus SSRIs. Biol. Psychiatry63 (4), 424–434 (2008).
  • Garnock-Jones KP , KeatingGM. Atomoxetine: a review of its use in attention-deficit hyperactivity disorder in children and adolescents. Paediatr. Drugs11 (3), 203–226 (2009).
  • Ratner S , LaorN, BronsteinY, WeizmanA, TorenP. Six-week open-label reboxetine treatment in children and adolescents with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry44 (5), 428–433 (2005).
  • Breder CD . US 20100069390 A1 (2010).
  • Barbey JT , RooseSP. SSRI safety in overdose. J. Clin. Psychiatry59 (Suppl. 15), 42–48 (1998).
  • Goldstein BJ , GoodnickPJ. Selective serotonin reuptake inhibitors in the treatment of affective disorders – III. Tolerability, safety and pharmacoeconomics. J. Psychopharmacol.12 (3 Suppl. B), S55–S87 (1998).
  • Gumnick JF , NemeroffCB. Problems with currently available antidepressants. J. Clin. Psychiatry61 (Suppl. 10), 5–15 (2000).
  • Steffens DC , KrishnanKR, HelmsMJ. Are SSRIs better than TCAs? Comparison of SSRIs and TCAs: a meta-analysis. Depress. Anxiety6 (1), 10–18 (1997).
  • Rush AJ , TrivediMH, WisniewskiSRet al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatry163 (11), 1905–1917 (2006).
  • Andersen J , KristensenAS, Bang-AndersenB, StromgaardK. Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters. Chem. Commun. (Camb.) (25), 3677–3692 (2009).
  • Tatsumi M , GroshanK, BlakelyRD, RichelsonE. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur. J. Pharmacol.340 (2–3), 249–258 (1997).
  • Auclair AL , MartelJC, AssieMBet al. Levomilnacipran (F2695), a norepinephrine-preferring SNRI: profile in vitro and in models of depression and anxiety. Neuropharmacology70, 338–347 (2013).
  • Owen RT . Vilazodone: a new treatment option for major depressive disorder. Drugs Today (Barc.)47 (7), 531–537 (2011).
  • Citrome L . Vortioxetine for major depressive disorder: a systematic review of the efficacy and safety profile for this newly approved antidepressant - what is the number needed to treat, number needed to harm and likelihood to be helped or harmed?Int. J. Clin. Pract.68 (1), 60–82 (2014).
  • D’Aquila PS , ColluM, GessaGL, SerraG. The role of dopamine in the mechanism of action of antidepressant drugs. Eur. J. Pharmacol.405 (1–3), 365–373 (2000).
  • Papakostas GI . Dopaminergic-based pharmacotherapies for depression. Eur. Neuropsychopharmacol.16 (6), 391–402 (2006).
  • Dunlop BW , NemeroffCB. The role of dopamine in the pathophysiology of depression. Arch. Gen. Psychiatry64 (3), 327–337 (2007).
  • Nutt D , DemyttenaereK, JankaZet al. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J. Psychopharmacol.21 (5), 461–471 (2007).
  • Mcdonald WM , RichardIH, DelongMR. Prevalence, etiology, and treatment of depression in Parkinson’s disease. Biol. Psychiatry54 (3), 363–375 (2003).
  • Brown AS , GershonS. Dopamine and depression. J. Neural. Transm. Gen. Sect.91 (2–3), 75–109 (1993).
  • Nestler EJ , CarlezonWAJr. The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry59 (12), 1151–1159 (2006).
  • Willner P . Dopamine and depression: a review of recent evidence. I. Empirical studies. Brain Res.287 (3), 211–224 (1983).
  • Mischoulon D , NierenbergAA, KizilbashL, RosenbaumJF, FavaM. Strategies for managing depression refractory to selective serotonin reuptake inhibitor treatment: a survey of clinicians. Can. J. Psychiatry45 (5), 476–481 (2000).
  • Ascher JA , ColeJO, ColinJNet al. Bupropion: a review of its mechanism of antidepressant activity. J. Clin. Psychiatry56 (9), 395–401 (1995).
  • Reneric JP , LuckiI. Antidepressant behavioral effects by dual inhibition of monoamine reuptake in the rat forced swimming test. Psychopharmacology (Berl.)136 (2), 190–197 (1998).
  • Prica C , HascoetM, BourinM. Is co-administration of bupropion with SSRIs and SNRIs in forced swimming test in mice, predictive of efficacy in resistant depression?Behav. Brain Res.194 (1), 92–99 (2008).
  • Sporn J , GhaemiSN, SamburMRet al. Pramipexole augmentation in the treatment of unipolar and bipolar depression: a retrospective chart review. Ann. Clin. Psychiatry12 (3), 137–140 (2000).
  • Brocco M , DekeyneA, PappM, MillanMJ. Antidepressant-like properties of the anti-parkinson agent, piribedil, in rodents: mediation by dopamine D2 receptors. Behav. Pharmacol.17 (7), 559–572 (2006).
  • Kinney JL . Nomifensine maleate: a new second-generation antidepressant. Clin. Pharm.4 (6), 625–636 (1985).
  • Marks DM , PaeCU, PatkarAA. Triple reuptake inhibitors: the next generation of antidepressants. Curr. Neuropharmacol.6 (4), 338–343 (2008).
  • Guiard BP , El MansariM, BlierP. Prospect of a dopamine contribution in the next generation of antidepressant drugs: the triple reuptake inhibitors. Curr. Drug Targets10 (11), 1069–1084 (2009).
  • Fava M , RankinM. Sexual functioning and SSRIs. J. Clin. Psychiatry63 (Suppl. 5), 13–16; discussion 23–15 (2002).
  • Gitlin MJ , SuriR, AltshulerL, Zuckerbrow-MillerJ, FairbanksL. Bupropion-sustained release as a treatment for SSRI-induced sexual side effects. J. Sex Marital. Ther.28 (2), 131–138 (2002).
  • Prins J , OlivierB, KorteSM. Triple reuptake inhibitors for treating subtypes of major depressive disorder: the monoamine hypothesis revisited. Expert Opin. Investig. Drugs20 (8), 1107–1130 (2011).
  • Dutta AK , MeltzerPC, MadrasBK. Positional importance of the nitrogen atom in novel piperidine analogues of GBR 12909: affinity and selectivity for the dopamine transporter. Med. Chem. Res.3 (4), 209–222 (1993).
  • Dutta AK , XuC, ReithME. Structure-activity relationship studies of novel 4-[2-[bis(4-fluorophenyl)methoxy]ethyl]-1-(3-phenylpropyl)piperidine analogs: synthesis and biological evaluation at the dopamine and serotonin transporter sites. J. Med. Chem.39 (3), 749–756 (1996).
  • Dutta AK , CoffeyLL, ReithME. Highly selective, novel analogs of 4-[2-(diphenylmethoxy)ethyl]- 1-benzylpiperidine for the dopamine transporter: effect of different aromatic substitutions on their affinity and selectivity. J. Med. Chem.40 (1), 35–43 (1997).
  • Dutta AK , XuC, ReithME. Tolerance in the replacement of the benzhydrylic O atom in 4-[2-(diphenylmethoxy)ethyl]-1-benzylpiperidine derivatives by an N atom: development of new-generation potent and selective N-analogue molecules for the dopamine transporter. J. Med. Chem.41 (17), 3293–3297 (1998).
  • Dutta AK , DavisMC, ReithME. Rational design and synthesis of novel 2,5-disubstituted cis- and trans-piperidine derivatives exhibiting differential activity for the dopamine transporter. Bioorg. Med. Chem. Lett.11 (17), 2337–2340 (2001).
  • Ghorai SK , CookC, DavisMet al. High affinity hydroxypiperidine analogues of 4-(2-benzhydryloxyethyl)-1-(4-fluorobenzyl)piperidine for the dopamine transporter: stereospecific interactions in vitro and in vivo. J. Med. Chem.46 (7), 1220–1228 (2003).
  • Kolhatkar RB , GhoraiSK, GeorgeC, ReithME, DuttaAK. Interaction of cis-(6-benzhydrylpiperidin-3-yl)benzylamine analogues with monoamine transporters: structure-activity relationship study of structurally constrained 3,6-disubstituted piperidine analogues of (2,2-diphenylethyl)-[1-(4-fluorobenzyl)piperidin-4-ylmethyl]amine. J. Med. Chem.46 (11), 2205–2215 (2003).
  • Zhang S , ReithME, DuttaAK. Design, synthesis, and activity of novel cis- and trans-3,6-disubstituted pyran biomimetics of 3,6-disubstituted piperidine as potential ligands for the dopamine transporter. Bioorg. Med. Chem. Lett.13 (9), 1591–1595 (2003).
  • Skolnick P , PopikP, JanowskyA, BeerB, LippaAS. Antidepressant-like actions of DOV 21,947: a “triple” reuptake inhibitor. Eur. J. Pharmacol.461 (2–3), 99–104 (2003).
  • Skolnick P , PopikP, JanowskyA, BeerB, LippaAS. “Broad spectrum” antidepressants: is more better for the treatment of depression?Life Sci.73 (25), 3175–3179 (2003).
  • Zhang S , ZhenJ, ReithME, DuttaAK. Structural requirements for 2,4- and 3,6-disubstituted pyran biomimetics of cis-(6-benzhydryl-piperidin-3-yl)-benzylamine compounds to interact with monoamine transporters. Bioorg. Med. Chem.12 (23), 6301–6315 (2004).
  • Zhang S , ZhenJ, ReithME, DuttaAK. Discovery of novel trisubstituted asymmetric derivatives of (2s,4r,5r)-2-benzhydryl-5-benzylaminotetrahydropyran-4-ol, exhibiting high affinity for serotonin and norepinephrine transporters in a stereospecific manner. J. Med. Chem.48 (15), 4962–4971 (2005).
  • Zhang S , FernandezF, HazeldineSet al. Further structural exploration of trisubstituted asymmetric pyran derivatives (2S,4R,5R)-2-benzhydryl-5-benzylamino-tetrahydropyran-4-ol and their corresponding disubstituted (3S,6S) pyran derivatives: a proposed pharmacophore model for high-affinity interaction with the dopamine, serotonin, and norepinephrine transporters. J. Med. Chem.49 (14), 4239–4247 (2006).
  • Santra S , GogoiS, GopishettyBet al. Structural exploration of (3S,6S)-6-benzhydryl-n-benzyltetrahydro-2h-pyran-3-amine analogues: identification of potent triple monoamine reuptake inhibitors as potential antidepressants. Chem. Med. Chem.7 (12), 2093–2100 (2012).
  • Gopishetty B , HazeldineS, SantraSet al. Further structure-activity relationship studies on 4-((((3s,6s)-6-benzhydryltetrahydro-2h-pyran-3-yl)amino)methyl)phenol: identification of compounds with triple uptake inhibitory activity as potential antidepressant agents. J. Med. Chem.54 (8), 2924–2932 (2011).
  • Dutta AK , SantraS, SharmaHet al. Pharmacological and behavioral characterization of D-473, an orally active triple reuptake inhibitor targeting dopamine, serotonin and norepinephrine transporters. PLoS ONE9 (11), e113420 (2014).
  • Dutta AK , GopishettyB, GogoiS, AliS, ZhenJ, ReithM. The novel trisubstituted pyran derivative D-142 has triple monoamine reuptake inhibitory activity and exerts potent antidepressant-like activity in rodents. Eur. J. Pharmacol.671 (1–3), 39–44 (2011).
  • Sharma H , SantraS, DebnathJ, AntonioT, ReithM, DuttaA. Flexible and biomimetic analogs of triple uptake inhibitor 4-((((3S,6S)-6-benzhydryltetrahydro-2h-pyran-3-yl)amino)methyl)phenol: synthesis, biological characterization, and development of a pharmacophore model. Bioorg. Med. Chem.22 (1), 311–324 (2014).
  • Basile AS , JanowskyA, GolembiowskaKet al. Characterization of the antinociceptive actions of bicifadine in models of acute, persistent, and chronic pain. J. Pharmacol. Exp. Ther.321 (3), 1208–1225 (2007).
  • Krieter PA , GohdesM, MusickTJ, DuncansonFP, BridsonWE. Pharmacokinetics, disposition, and metabolism of bicifadine in humans. Drug Metab. Dispos.36 (2), 252–259 (2008).
  • Andersen PH . The dopamine inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur. J. Pharmacol.166 (3), 493–504 (1989).
  • Maryanoff BE , MccomseyDF, GardockiJFet al. Pyrroloisoquinoline antidepressants. 2. In-depth exploration of structure-activity relationships. J. Med. Chem.30 (8), 1433–1454 (1987).
  • Moldt P , WatjenF. US5736556 A (1998).
  • Huot P , FoxSH, BrotchieJM. Monoamine reuptake inhibitors in Parkinson’s disease. Parkinson’s Disease2015, 1–71 (2015).
  • Skolnick P , KrieterP, TizzanoJet al. Preclinical and clinical pharmacology of DOV 216,303, a “triple” reuptake inhibitor. CNS Drug Rev.12 (2), 123–134 (2006).
  • Popik P , KrawczykM, GolembiowskaKet al. Pharmacological profile of the “triple” monoamine neurotransmitter uptake inhibitor, DOV 102,677. Cell Mol. Neurobiol.26 (4–6), 857–873 (2006).
  • Bymaster FP , GolembiowskaK, KowalskaM, ChoiYK, TaraziFI. Pharmacological characterization of the norepinephrine and dopamine reuptake inhibitor EB-1020: implications for treatment of attention-deficit hyperactivity disorder. Synapse66 (6), 522–532 (2012).
  • Miller S , StensbolTB. US20100144788 A1 (2010).
  • Bang-Andersen B , RuhlandT, JorgensenMet al. Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J. Med. Chem.54 (9), 3206–3221 (2011).
  • Shaw AM , BoulesM, ZhangYet al. Antidepressant-like effects of novel triple reuptake inhibitors, PRC025 and PRC050. Eur. J. Pharmacol.555 (1), 30–36 (2007).
  • Liang Y , ShawAM, BoulesMet al. Antidepressant-like pharmacological profile of a novel triple reuptake inhibitor, (1s,2s)-3-(methylamino)-2-(naphthalen-2-yl)-1-phenylpropan-1-ol (PRC200-SS). J. Pharmacol. Exp. Ther.327 (2), 573–583 (2008).
  • Bennett BA , WichemsCH, HollingsworthCKet al. Novel 2-substituted cocaine analogs: uptake and ligand binding studies at dopamine, serotonin and norepinephrine transport sites in the rat brain. J. Pharmacol. Exp. Ther.272 (3), 1176–1186 (1995).
  • Shao L , HewittMC, WangFet al. Discovery of n-methyl-1-(1-phenylcyclohexyl)ethanamine, a novel triple serotonin, norepinephrine and dopamine reuptake inhibitor. Bioorg. Med. Chem. Lett.21 (5), 1434–1437 (2011).
  • Fang X , GuoL, JiaJet al. SKF83959 is a novel triple reuptake inhibitor that elicits anti-depressant activity. Acta. Pharmacol. Sin.34 (9), 1149–1155 (2013).
  • Han Y , HanM, ShinD, SongC, HahnHG. Exploration of novel 3-substituted azetidine derivatives as triple reuptake inhibitors. J. Med. Chem.55 (18), 8188–8192 (2012).
  • Shao L , HewittMC, MalcolmSCet al. Synthesis and pharmacological characterization of bicyclic triple reuptake inhibitor 3-aryl octahydrocyclopenta[c]pyrrole analogues. J. Med. Chem.54 (15), 5283–5295 (2011).
  • Iversen L , GibbonsS, TrebleR, SetolaV, HuangXP, RothBL. Neurochemical profiles of some novel psychoactive substances. Eur. J. Pharmacol.700 (1–3), 147–151 (2013).
  • Zhou J , HeR, JohnsonKM, YeY, KozikowskiAP. Piperidine-based nocaine/modafinil hybrid ligands as highly potent monoamine transporter inhibitors: efficient drug discovery by rational lead hybridization. J. Med. Chem.47 (24), 5821–5824 (2004).
  • Gu XH , YuH, JacobsonAEet al. Design, synthesis, and monoamine transporter binding site affinities of methoxy derivatives of indatraline. J. Med. Chem.43 (25), 4868–4876 (2000).
  • Aluisio L , LordB, BarbierAJet al. In-vitro and in-vivo characterization of JNJ-7925476, a novel triple monoamine uptake inhibitor. Eur. J. Pharmacol.587 (1–3), 141–146 (2008).
  • Lee KH , ParkCE, MinKHet al. Synthesis and pharmacological evaluation of 3-aryl-3-azolylpropan-1-amines as selective triple serotonin/norepinephrine/dopamine reuptake inhibitors. Bioorg. Med. Chem. Lett.20 (18), 5567–5571 (2010).
  • Lucas MC , WeikertRJ, CarterDSet al. Design, synthesis, and biological evaluation of new monoamine reuptake inhibitors with potential therapeutic utility in depression and pain. Bioorg. Med. Chem. Lett.20 (18), 5559–5566 (2010).
  • Axford L , BootJR, HottenTMet al. Bicyclo[2.2.1]heptanes as novel triple re-uptake inhibitors for the treatment of depression. Bioorg. Med. Chem. Lett.13 (19), 3277–3280 (2003).
  • Shao L , WangF, MalcolmSCet al. Synthesis and pharmacological evaluation of 4-(3,4-dichlorophenyl)-n-methyl-1,2,3,4-tetrahydronaphthalenyl amines as triple reuptake inhibitors. Bioorg. Med. Chem.19 (1), 663–676 (2011).
  • Bettati M , CavanniP, Di FabioRet al. Oxa-azaspiro derivatives: a novel class of triple re-uptake inhibitors. Chem. Med. Chem.5 (3), 361–366 (2010).
  • Delorenzo C , LichensteinS, SchaeferKet al. SEP-225289 serotonin and dopamine transporter occupancy: a PET study. J. Nucl. Med.52 (7), 1150–1155 (2011).
  • Culig J , EhsanullahRS, HallettC, IliopoulouA, MathesonI, TurnerP. A clinical pharmacological comparison of diclofensine (Ro 8–4650) with nomifensine and amitriptyline in normal human volunteers. Br. J. Clin. Pharmacol.15 (5), 537–543 (1983).
  • Pearce RK , SmithLA, JacksonMJ, BanerjiT, Scheel-KrugerJ, JennerP. The monoamine reuptake blocker brasofensine reverses akinesia without dyskinesia in MPTP-treated and levodopa-primed common marmosets. Mov. Disord.17 (5), 877–886 (2002).
  • Zhu M , WhiganDB, ChangSY, DockensRC. Disposition and metabolism of [14c]brasofensine in rats, monkeys, and humans. Drug Metab. Dispos.36 (1), 24–35 (2008).
  • Wilens TE , KlintT, AdlerLet al. A randomized controlled trial of a novel mixed monoamine reuptake inhibitor in adults with ADHD. Behav. Brain Funct.4, 24 (2008).
  • Learned S , GraffO, RoychowdhurySet al. Efficacy, safety, and tolerability of a triple reuptake inhibitor GSK372475 in the treatment of patients with major depressive disorder: two randomized, placebo- and active-controlled clinical trials. J. Psychopharmacol.26 (5), 653–662 (2012).
  • Thatte U . NS-2330 (Neurosearch). Curr. Opin. Investig. Drugs2 (11), 1592–1594 (2001).
  • Sorensen G , HusumH, BrennumLTet al. Addiction-related effects of DOV 216,303 and cocaine: a comparative study in the mouse. Basic Clin. Pharmacol. Toxicol.114 (6), 451–459 (2014).
  • Lu AA24530 shows positive results in major depressive disorder Phase II study. http://investor.lundbeck.com/releasedetail.cfm?ReleaseID=608619
  • Takeda and Lundbeck announce FDA approval of brintellix™ (vortioxetine) for treatment of adults with major depressive disorder. http://investor.lundbeck.com/releasedetail.cfm?ReleaseID=794050
  • Gibb A , DeeksED. Vortioxetine: first global approval. Drugs74 (1), 135–145 (2014).
  • Hanna MM , EidNM, GeorgeRF, SafwatHM. Synthesis of some tropane derivatives of anticipated activity on the reuptake of norepinephrine and/or serotonin. Bioorg. Med. Chem.15 (24), 7765–7772 (2007).
  • Guha M , HeierA, PriceSet al. Assessment of biomarkers of drug-induced kidney injury in cynomolgus monkeys treated with a triple reuptake inhibitor. Toxicol. Sci.120 (2), 269–283 (2011).
  • Bennett BA , HollingsworthCK, MartinRSet al. Prolonged dopamine and serotonin transporter inhibition after exposure to tropanes. Neuropharmacology37 (1), 123–130 (1998).
  • Daunais JB , HartSL, SmithHRet al. Long-acting blockade of biogenic amine transporters in rat brain by administration of the potent novel tropane 2beta-propanoyl-3beta-(2-naphthyl)-tropane. J. Pharmacol. Exp. Ther.285 (3), 1246–1254 (1998).
  • Dawson P , Opacka-JuffryJ, MoffattJDet al. The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry48, 57–63 (2014).
  • Bogeso KP , ChristensenAV, HyttelJ, LiljeforsT. 3-Phenyl-1-indanamines. Potential antidepressant activity and potent inhibition of dopamine, norepinephrine, and serotonin uptake. J. Med. Chem.28 (12), 1817–1828 (1985).
  • Lengyel K , PieschlR, StrongTet al. Ex vivo assessment of binding site occupancy of monoamine reuptake inhibitors: methodology and biological significance. Neuropharmacology55 (1), 63–70 (2008).
  • Schenk S . Effects of GBR 12909, WIN 35,428 and indatraline on cocaine self-administration and cocaine seeking in rats. Psychopharmacology (Berl.)160 (3), 263–270 (2002).
  • Micheli F , CavanniP, AndreottiDet al. 6-(3,4-Dichlorophenyl)-1-[(methyloxy)methyl]-3-azabicyclo[4.1.0]heptane: a new potent and selective triple reuptake inhibitor. J. Med. Chem.53 (13), 4989–5001 (2010).
  • Beer B , StarkJ, KrieterPet al. DOV 216,303, a “triple” reuptake inhibitor: safety, tolerability, and pharmacokinetic profile. J. Clin. Pharmacol.44 (12), 1360–1367 (2004).
  • Tran P , SkolnickP, CzoborPet al. Efficacy and tolerability of the novel triple reuptake inhibitor amitifadine in the treatment of patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. J. Psychiatr. Res.46 (1), 64–71 (2012).
  • Schreiber R , LewR, HardyL, CremersT, FangQK, CampbellU. Pharmacological characterization of the triple monoamine transporter inhibitor SEP-225289. Presented at : Meeting of Society for Neuroscience, Chicago, IL, USA, 17–21October 2009.
  • Comley RA , SalinasCA, SlifsteinMet al. Monoamine transporter occupancy of a novel triple reuptake inhibitor in baboons and humans using positron emission tomography. J. Pharmacol. Exp. Ther.346 (2), 311–317 (2013).
  • Risinger R , BhagwagarZ, LuoFet al. Evaluation of safety and tolerability, pharmacokinetics, and pharmacodynamics of BMS-820836 in healthy subjects: a placebo-controlled, ascending single-dose study. Psychopharmacology (Berl.)231 (11), 2299–2310 (2014).
  • Tran P , SkolnickP, CzoborPet al. Efficacy and tolerability of the novel triple reuptake inhibitor amitifadine in the treatment of patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. J. Psychiatr. Res.46 (1), 64–71 (2012).
  • Lane RM . Antidepressant drug development: focus on triple monoamine reuptake inhibition. J. Psychopharmacol.29 (5), 526–544 (2015).
  • Czobor P , SkolnickP. The secrets of a successful clinical trial: compliance, compliance, and compliance. Mol. Interv.11 (2), 107–110 (2011).
  • Bourdet DL , TsurudaPR, ObedencioGP, SmithJA. Prediction of human serotonin and norepinephrine transporter occupancy of duloxetine by pharmacokinetic/pharmacodynamic modeling in the rat. J. Pharmacol. Exp. Ther.341 (1), 137–145 (2012).
  • Ding YS , NaganawaM, GallezotJDet al. Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: implications on treatment of depression and ADHD. Neuroimage86, 164–171 (2014).
  • Smith JA , PatilD, DanielsOet al. Preclinical to clinical translation of CNS transporter occupancy of TD-9855, a novel norepinephrine and serotonin reuptake inhibitor. Int. J. Neuropsychopharmacol.18 (2), (2015).
  • Learned-Coughlin SM , BergstromM, SavitchevaI, AscherJ, SchmithVD, LangstromB. In vivo activity of bupropion at the human dopamine transporter as measured by positron emission tomography. Biol. Psychiatry54 (8), 800–805 (2003).
  • Appel L , BergstromM, Buus LassenJ, LangstromB. Tesofensine, a novel triple monoamine re-uptake inhibitor with anti-obesity effects: dopamine transporter occupancy as measured by PET. Eur. Neuropsychopharmacol.24 (2), 251–261 (2014).
  • George M , RajaramM, ShanmugamE. New and emerging drug molecules against obesity. J. Cardiovasc. Pharmacol. Ther.19 (1), 65–76 (2014).
  • Tizzano JP , StriblingDS, Perez-TilveDet al. The triple uptake inhibitor (1r,5s)-(+)-1-(3,4-dichlorophenyl)-3-azabicyclo[3.1.0] hexane hydrochloride (DOV 21947) reduces body weight and plasma triglycerides in rodent models of diet-induced obesity. J. Pharmacol. Exp. Ther.324 (3), 1111–1126 (2008).
  • Dov 21,947 demonstrates significant body weight and BMI reductions in drug- compliant subjects in Phase Ib clinical study. www.sec.gov/Archives/edgar/data/1066833/000114420407051174/v088668_ex99–1.htm
  • O’tousa DS , WarnockKT, MatsonLMet al. Triple monoamine uptake inhibitors demonstrate a pharmacologic association between excessive drinking and impulsivity in high-alcohol-preferring (HAP) mice. Addict. Biol.20 (2), 236–247 (2013).
  • Economidou D , TheobaldDE, RobbinsTW, EverittBJ, DalleyJW. Norepinephrine and dopamine modulate impulsivity on the five-choice serial reaction time task through opponent actions in the shell and core sub-regions of the nucleus accumbens. Neuropsychopharmacology37 (9), 2057–2066 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.