644
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent Developments and Applications of Clickable Photoprobes in Medicinal Chemistry and Chemical Biology

&
Pages 2143-2171 | Published online: 29 Oct 2015

References

  • Smith E , CollinsI. Photoaffinity labeling in target- and binding-site identification. Future Med. Chem.7 (2), 159–183 (2015).
  • He B , VelaparthiS, PieffetGet al. Binding ensemble profiling with photoaffinity labeling (BEProFL) approach: mapping the binding poses of HDAC8 inhibitors. J. Med. Chem.52 (22), 7003–7013 (2009).
  • Sadaghiani AM , VerhelstSH, BogyoM. Tagging and detection strategies for activity-based proteomics. Curr. Opin. Chem. Biol.11 (1), 20–28 (2007).
  • Geurink PP , PrelyLM, van der MarelGA, BischoffR, OverkleeftHS. Photoaffinity labeling in activity-based protein profiling. Top. Curr. Chem.324, 85–113 (2012).
  • Lapinsky DJ . Tandem photoaffinity labeling-bioorthogonal conjugation in medicinal chemistry. Bioorg. Med. Chem.20 (21), 6237–6247 (2012).
  • Lallana E , RigueraR, Fernandez-MegiaE. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions. Angew. Chem. Int. Ed. Engl.50 (38), 8794–8804 (2011).
  • van Berkel SS , van EldijkMB, van HestJC. Staudinger ligation as a method for bioconjugation. Angew. Chem. Int. Ed. Engl.50 (38), 8806–8827 (2011).
  • Speers AE , AdamGC, CravattBF. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc.125 (16), 4686–4687 (2003).
  • Wigglesworth MJ , MurrayDC, BlackettCJ, KossenjansM, NissinkJW. Increasing the delivery of next generation therapeutics from high throughput screening libraries. Curr. Opin. Chem. Biol.26, 104–110 (2015).
  • Wassermann AM , CamargoLM, AuldDS. Composition and applications of focus libraries to phenotypic assays. Front. Pharmacol.5, 164 (2014).
  • Eggert US . The why and how of phenotypic small-molecule screens. Nat. Chem. Biol.9 (4), 206–209 (2013).
  • Schreiber SL , KotzJD, LiMet al. Advancing biological understanding and therapeutics discovery with small-molecule probes. Cell161 (6), 1252–1265 (2015).
  • Côté M , MisasiJ, RenTet al. Small molecule inhibitors reveal Niemann- Pick C1 is essential for Ebola virus infection. Nature477 (7364), 344–348 (2011).
  • Lee K , RenT, CôtéMet al. Inhibition of Ebola Virus Infection: Identification of Niemann-Pick C1 as the target by optimization of a chemical probe. ACS Med. Chem. Lett.4 (2), 239–243 (2013).
  • Gillespie EJ , HoCL, BalajiKet al. Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses. Proc. Natl Acad. Sci. USA110 (50), E4904–E4912 (2013).
  • Jung ME , ChamberlainBT, HoCL, GillespieEJ, BradleyKA. Structure-activity relationship of semicarbazone EGA furnishes photoaffinity inhibitors of anthrax toxin cellular entry. ACS Med. Chem. Lett.5 (4), 363–367 (2014).
  • Eirich J , BraigS, SchyschkaLet al. A small molecule inhibits protein disulfide isomerase and triggers the chemosensitization of cancer cells. Angew. Chem. Int. Ed. Engl.53 (47), 12960–12965 (2014).
  • Koh M , ParkJ, KooJYet al. Phenotypic screening to identify small-molecule enhancers for glucose uptake: target identification and rational optimization of their efficacy. Angew. Chem. Int. Ed. Engl.53 (20), 5102–5106 (2014).
  • Pieper AA , XieS, CapotaEet al. Discovery of a proneurogenic, neuroprotective chemical. Cell142 (1), 39–51 (2010).
  • Wang G , HanT, NijhawanDet al. P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage. Cell158 (6), 1324–1334 (2014).
  • Warashina M , MinKH, KuwabaraTet al. A synthetic small molecule that induces neuronal differentiation of adult hippocampal neural progenitor cells. Angew. Chem. Int. Ed. Engl.45 (4), 591–593 (2006).
  • Wurdak H , ZhuS, MinKHet al. A small molecule accelerates neuronal differentiation in the adult rat. Proc. Natl Acad. Sci. USA107 (38), 16542–16547 (2010).
  • Lee S , NamY, KooJYet al. A small molecule binding HMGB1 and HMGB2 inhibits microglia-mediated neuroinflammation. Nat. Chem. Biol.10 (12), 1055–1060 (2014).
  • Park J , OhS, ParkSB. Discovery and target identification of an antiproliferative agent in live cells using fluorescence difference in two-dimensional gel electrophoresis. Angew. Chem. Int. Ed. Engl.51 (22), 5447–5451 (2012).
  • Sun H , XuY, SitkiewiczIet al. Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice. Proc. Natl Acad. Sci. USA109 (9), 3469–3474 (2012).
  • Yestrepsky BD , KretzCA, XuYet al. Development of tag-free photoprobes for studies aimed at identifying the target of novel Group A Streptococcus antivirulence agents. Bioorg. Med. Chem. Lett.24 (6), 1538–1544 (2014).
  • Kambe T , CorreiaBE, NiphakisMJ, CravattBF. Mapping the protein interaction landscape for fully functionalized small-molecule probes in human cells. J. Am. Chem. Soc.136 (30), 10777–10782 (2014).
  • Yang P , LiuK. Activity-based protein profiling: recent advances in probe development and applications. ChemBioChem16 (5), 712–724 (2015).
  • Simon GM , NiphakisMJ, CravattBF. Determining target engagement in living systems. Nat. Chem. Biol.9 (4), 200–205 (2013).
  • van der Meijden B , RobinsonJA. Synthesis of a polymyxin derivative for photolabeling studies in the Gram-negative bacterium Escherichia coli. J. Pept. Sci.21 (3), 231–235 (2015).
  • Eirich J , OrthR, SieberSA. Unraveling the protein targets of vancomycin in living S. aureus and E. faecalis cells. J. Am. Chem. Soc.133 (31), 12144–12153 (2011).
  • Lapinski L , RostkowskaH, KhvorostovA, FaustoR, NowackMJ. Photochemical ring-opening reaction in 2(1H)-pyrimidinones: a matrix isolation study. J. Phys. Chem. A107 (31), 5913–5919 (2003).
  • Nishio T . Photochemical reactions of 1-aryl-2(1H)-pyrimidinones in alcohol. Liebigs Ann. Chem.1, 71–73 (1992).
  • Battenberg OA , NodwellMB, SieberSA. Evaluation of α-pyrones and pyrimidones as photoaffinity probes for affinity-based protein profiling. J. Org. Chem.76 (15), 6075–6087 (2011).
  • Dubinsky L , DelagoA, AmaraNet al. Species selective diazirine positioning in tag-free photoactive quorum sensing probes. Chem. Commun.49 (52), 5826–5828 (2013).
  • Kita M , HirayamaY, YamagishiK, YonedaK, FujisawaR, KigoshiH. Interactions of the antitumor macrolide aplyronine A with actin and actin-related proteins established by its versatile photoaffinity derivatives. J. Am. Chem. Soc.134 (50), 20314–20317 (2012).
  • Kempf K , RajaA, SasseF, SchobertR. Synthesis of penicillenol C1 and of a bis-azide analogue for photoaffinity labeling. J. Org. Chem.78 (6), 2455–2461 (2013).
  • Sharma LK , CupitPM, GorongaT, WebbTR, CunninghamC. Design and synthesis of molecular probes for the determination of the target of the anthelmintic drug praziquantel. Bioorg. Med. Chem. Lett.24 (11), 2469–2472 (2014).
  • Penarete-Vargas DM , BoissonA, UrbachSet al. A chemical proteomics approach for the search of pharmacological targets of the antimalarial clinical candidate albitiazolium in Plasmodium falciparum using photocrosslinking and click chemistry. PLoS ONE9 (12), e113918 (2014).
  • Mizuhara T , OishiS, OhnoH, ShimuraK, MatsuokaM, FujiiN. Design and synthesis of biotin- or alkyne-conjugated photoaffinity probes for studying the target molecules of PD 404182. Bioorg. Med. Chem.21 (7), 2079–2087 (2013).
  • Duckworth BP , WilsonDJ, NelsonKM, BoshoffHI, BarryCE3rd, AldrichCC. Development of a selective activity-based probe for adenylating enzymes: profiling MbtA involved in siderophore biosynthesis from Mycobacterium tuberculosis. ACS Chem. Biol.7 (10), 1653–1658 (2012).
  • Kiyonaka S , KatoK, NishidaMet al. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc. Natl Acad. Sci. USA106 (13), 5400–5405 (2009).
  • Schülke JP , McAllisterLA, GeogheganKFet al. Chemoproteomics demonstrates target engagement and exquisite selectivity of the clinical phosphodiesterase10A inhibitor MP-10 in its native environment. ACS Chem. Biol.9 (12), 2823–2832 (2014).
  • Li Z , HaoP, LiLet al. Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling. Angew. Chem. Int. Ed. Engl.52 (33), 8551–8556 (2013).
  • Su Y , PanS, LiZet al. Multiplex imaging and cellular target identification of kinase inhibitors via an affinity-based proteome profiling approach. Sci. Rep.5, 7724 (2015).
  • Ranjitkar P , PereraBG, SwaneyDLet al. Affinity-based probes based on type II kinase inhibitors. J. Am. Chem. Soc.134 (46), 19017–19025 (2012).
  • Andrews SS , HillZB, PereraBG, MalyDJ. Label transfer reagents to probe p38 MAPK binding partners. ChemBioChem14 (2), 209–216 (2013).
  • Bell JL , HaakAJ, WadeSM, SunY, NeubigRR, LarsenSD. Design and synthesis of tag-free photoprobes for the identification of the molecular target for CCG-1423, a novel inhibitor of the Rho/MKL1/SRF signaling pathway. Beilstein J. Org. Chem.9, 966–973 (2013).
  • Sherratt AR , NasheriN, McKayCSet al. A new chemical probe for phosphatidylinositol kinase activity. ChemBioChem15 (9), 1253–1256 (2014).
  • Naik R , WonM, BanHSet al. Synthesis and structure-activity relationship study of chemical probes as hypoxia induced factor-1α/malate dehydrogenase 2 inhibitors. J. Med. Chem.57 (22), 9522–9538 (2014).
  • Lee K , BanHS, NaikRet al. Identification of malate dehydrogenase 2 as a target protein of the HIF-1 inhibitor LW6 using chemical probes. Angew. Chem. Int. Ed. Engl.52 (39), 10286–10289 (2013).
  • Kim BS , LeeK, JungHJ, BhattaraiD, KwonHJ. HIF-1α suppressing small molecule, LW6, inhibits cancer cell growth by binding to calcineurin B homologous protein 1. Biochem. Biophys. Res. Commun.458 (1), 14–20 (2015).
  • Hiroyuki N , HyunSB, KazukiS, HidemitsuM, ShinichiS. Design of photoaffinity probe molecules for identification and modification of target proteins. J. Photopolymer Sci. Tech.27 (4), 453–458 (2014).
  • Crump CJ , FishBA, CastroSVet al. Piperidine acetic acid based γ-secretase modulators directly bind to Presenilin-1. ACS Chem. Neurosci.2 (12), 705–710 (2011).
  • Pozdnyakov N , MurreyHE, CrumpCJet al. γ-Secretase modulator (GSM) photoaffinity probes reveal distinct allosteric binding sites on presenilin. J. Biol. Chem.288 (14), 9710–9720 (2013).
  • Crump CJ , CastroSV, WangFet al. BMS-708,163 targets presenilin and lacks notch-sparing activity. Biochemistry51 (37), 7209–7211 (2012).
  • Pettersson M , JohnsonDS, SubramanyamCet al. Design, synthesis, and pharmacological evaluation of a novel series of pyridopyrazine-1,6-dione γ-secretase modulators. J. Med. Chem.57 (3), 1046–1062 (2014).
  • Pettersson M , JohnsonDS, HumphreyJMet al. Discovery of indole-derived pyridopyrazine-1,6-dione γ-secretase modulators that target presenilin. Bioorg. Med. Chem. Lett.25 (4), 908–913 (2015).
  • Ballard TE , MurreyHE, GeogheganKF, am EndeCW, JohnsonDS. Investigating γ-secretase protein interactions in live cells using active site-directed clickable dual-photoaffinity probes. Med. Chem. Commun.5 (3), 321–327 (2014).
  • Gertsik N , BallardTE, Am EndeCW, JohnsonDS, LiYM. Development of CBAP-BPyne, a probe for γ-secretase and presenilinase. Med. Chem. Commun.5 (3), 338–341 (2014).
  • Vaidya AS , NeelarapuR, MadriagaAet al. Novel histone deacetylase 8 ligands without a zinc chelating group: exploring an ‘upside-down’ binding pose. Bioorg. Med. Chem. Lett.22 (21), 6621–6627 (2012).
  • Abdelkarim H , BrunsteinerM, NeelarapuRet al. Photoreactive “nanorulers” detect a novel conformation of full length HDAC3-SMRT complex in solution. ACS Chem. Biol.8 (11), 2538–2549 (2013).
  • Montgomery DC , SorumAW, MeierJL. Chemoproteomic profiling of lysine acetyltransferases highlights an expanded landscape of catalytic acetylation. J. Am. Chem. Soc.136 (24), 8669–8676 (2014).
  • Tam EK , LiZ, GohYLet al. Cell-based proteome profiling using an affinity-based probe (AfBP) derived from 3-deazaneplanocin A (DzNep). Chem. Asian J.8 (8), 1818–1828 (2013).
  • Li Z , WangD, LiLet al. “Minimalist” cyclopropene-containing photo-cross-linkers suitable for live-cell imaging and affinity-based protein labeling. J. Am. Chem. Soc.136 (28), 9990–9998 (2014).
  • Harbut MB , VelmourouganeG, ReissG, ChandramohanadasR, GreenbaumDC. Development of bestatin-based activity-based probes for metallo-aminopeptidases. Bioorg. Med. Chem. Lett.18 (22), 5932–5936 (2008).
  • Zhou Y , GuoT, LiXet al. Discovery of selective 2,4-diaminopyrimidine-based photoaffinity probes for glyoxalase I. Med. Chem. Commun.5, 352–357 (2014).
  • Guo LW , HajipourAR, KaraogluK, MavlyutovTA, RuohoAE. Development of benzophenone-alkyne bifunctional sigma receptor ligands. ChemBioChem13 (15), 2277–2289 (2012).
  • George Cisar EA , NguyenN, RosenH. A GTP affinity probe for proteomics highlights flexibility in purine nucleotide selectivity. J. Am. Chem. Soc.135 (12), 4676–4679 (2013).
  • Zhang L , ZhangY, DongJ, LiuJ, ZhangL, SunH. Design and synthesis of novel photoaffinity probes for study of the target proteins of oleanolic acid. Bioorg. Med. Chem. Lett.22 (2), 1036–1039 (2012).
  • Hulce JJ , CognettaAB, NiphakisMJ, TullySE, CravattBF. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods10 (3), 259–264 (2013).
  • Li L , TangW, ZhaoZ. Synthesis and application of prenyl-derived photoaffinity probes. Chin. J. Chem.27, 1391–1396 (2009).
  • Haberkant P , RaijmakersR, WildwaterMet al. In vivo profiling and visualization of cellular protein-lipid interactions using bifunctional fatty acids. Angew. Chem. Int. Ed. Engl.52 (14), 4033–4038 (2013).
  • Peng T , HangHC. Bifunctional fatty acid chemical reporter for analyzing S-palmitoylated membrane protein-protein interactions in mammalian cells. J. Am. Chem. Soc.137 (2), 556–559 (2015).
  • Abe M , NakanoM, KosakaA, MiyoshiH. Syntheses of photoreactive cardiolipins for a photoaffinity labeling study. Tetrahedron Lett.56, 2258–2261 (2015).
  • Khan AA , KamenaF, TimmerMS, StockerBL. Development of a benzophenone and alkyne functionalised trehalose probe to study trehalose dimycolate binding proteins. Org. Biomol. Chem.11 (6), 881–885 (2013).
  • Murai M , MatsunobuK, KudoS, IfukuK, KawamukaiM, MiyoshiH. Identification of the binding site of the quinone-head group in mitochondrial Coq10 by photoaffinity labeling. Biochemistry53 (24), 3995–4003 (2014).
  • Murai M , MurakamiS, ItoT, MiyoshiH. Amilorides bind to the quinone binding pocket of bovine mitochondrial complex I. Biochemistry54 (17), 2739–2746 (2015).
  • Singh A , ThortonER, WestheimerFH. The photolysis of diazoacetylchymotrypsin. J. Biol. Chem.237, 3006–3008 (1962).
  • Wittelsberger A , ThomasBE, MierkeDF, RosenblattM. Methionine acts as a “magnet” in photoaffinity crosslinking experiments. FEBS Lett.580 (7), 1872–1876 (2006).
  • Pettersson MY , JohnsonDS, SubramanyamCet al. WO 2015049616 A1 20150409 (2015).
  • Tae HS , HinesJ, SchneeklothAR, CrewsCM. Total synthesis and biological evaluation of tyroscherin. Org. Lett.12 (19), 4308–4311.
  • Yoshida S , MisawaY, HosoyaT. Formal C-H-azidation-based shortcut to diazido building blocks for the versatile preparation of photoaffinity labeling probes. Eur. J. Org. Chem. (19), 3991–3995 (2014).
  • Klein LL , PetukhovaV. Synthesis of trifunctional bis-azide photoaffinity probe. Synthetic Commun.43 (16), 2242–2245 (2013).
  • Xu H , HettEC, GopalsamyA, ParikhMDet al. A library approach to rapidly discover photoaffinity probes of the mRNA decapping scavenger enzyme DcpS. Mol. BioSyst. doi:10.1039/c5mb00288e (2015) ( Epub ahead of print).
  • Swinney DC , AnthonyJ. How were new medicines discovered?Nat. Rev. Drug Discov.10 (7), 507–519 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.