195
Views
1
CrossRef citations to date
0
Altmetric
Review

Chemical Genetics and Regeneration

, &
Pages 2263-2283 | Published online: 29 Oct 2015

References

  • Maden M . A history of regeneration research. Milestones in the evolution of a science. Cell69 (5), 723–724 (1992).
  • Nelson TJ , Martinez-FernandezA, TerzicA. Induced pluripotent stem cells: developmental biology to regenerative medicine. Nat. Rev. Cardiol.7 (12), 700–710 (2010).
  • El-Badawy A , El-BadriN. Regulators of pluripotency and their implications in regenerative medicine. Stem Cells Cloning8, 67–80 (2015).
  • Yamakawa H , IedaM. Strategies for heart regeneration: approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming. Int. Heart J.56 (1), 1–5 (2015).
  • Singh VK , KalsanM, KumarN, SainiA, ChandraR. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev. Biol.3, 2 (2015).
  • Hirschi KK , LiS, RoyK. Induced pluripotent stem cells for regenerative medicine. Annu. Rev. Biomed. Eng.16, 277–294 (2014).
  • Green EM , LeeRT. Proteins and small molecules for cellular regenerative medicine. Physiol. Rev.93 (1), 311–325 (2013).
  • Li W , JiangK, WeiW, ShiY, DingS. Chemical approaches to studying stem cell biology. Cell Res.23 (1), 81–91 (2013).
  • Mitchison TJ . Towards a pharmacological genetics. Chem. Biol.1 (1), 3–6 (1994).
  • Schreiber SL . Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorganic Med. Chem.6 (8), 1127–1152 (1998).
  • Anighoro A , BajorathJ, RastelliG. Polypharmacology: challenges and opportunities in drug discovery. J. Med. Chem.57 (19), 7874–7887 (2014).
  • Dar AC , DasTK, ShokatKM, CaganRL. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature486 (7401), 80–84 (2012).
  • Reddy AS , ZhangS. Polypharmacology: drug discovery for the future. Expert Rev. Clin. Pharmacol.6 (1), 41–47 (2013).
  • Alaimo PJ , Shogren-KnaakMA, ShokatKM. Chemical genetic approaches for the elucidation of signaling pathways. Curr. Opin. Chem. Biol.5 (4), 360–367 (2001).
  • Scannell JW , BlanckleyA, BoldonH, WarringtonB. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov.11 (3), 191–200 (2012).
  • Swinney DC , AnthonyJ. How were new medicines discovered?Nat. Rev. Drug Discov.10 (7), 507–19 (2011).
  • Murphey RD , ZonLI. Small molecule screening in the zebrafish. Methods39 (3), 255–261 (2006).
  • Zon LI , PetersonRT. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov.4 (1), 35–44 (2005).
  • Wheeler GN , BrändliAW. Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus. Dev. Dyn.238 (6), 1287–308 (2009).
  • Goessling W , NorthTE. Repairing quite swimmingly: advances in regenerative medicine using zebrafish. Dis. Model. Mech.7 (7), 769–76 (2014).
  • Rennekamp AJ , PetersonRT. 15 years of zebrafish chemical screening. Curr. Opin. Chem. Biol.24, 58–70 (2015).
  • Taylor KL , GrantNJ, TemperleyND, PattonEE. Small molecule screening in zebrafish: an in vivo approach to identifying new chemical tools and drug leads. Cell Commun. Signal.8, 11 (2010).
  • Wang J , ConboyI. Embryonic vs. adult myogenesis: challenging the “regeneration recapitulates development” paradigm. J. Mol. Cell Biol.2 (1), 1–4 (2010).
  • Agata K , WatanabeK. Molecular and cellular aspects of planarian regeneration. Semin. Cell Dev. Biol.10 (4), 377–383 (1999).
  • Wagner DE , WangIE, ReddienPW. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science332 (6031), 811–816 (2011).
  • Sánchez Alvarado A , NewmarkPA. The use of planarians to dissect the molecular basis of metazoan regeneration. Wound Repair Regen.6 (4), 413–420.
  • Br⊘ndsted HV . Planarian Regeneration (International Series of Monographs in Pure and Applied Biology), (1st Edition). Pergamon Press, Scotland (1969).
  • Elliott SA , Sánchez AlvaradoA. The history and enduring contributions of planarians to the study of animal regeneration. Wiley Interdiscip. Rev. Dev. Biol.2 (3), 301–326 (2013).
  • Fraguas S , BarberánS, CebriàF. EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Dev. Biol.354 (1), 87–101 (2011).
  • Reddien PW , BermangeAL, KiczaAM, Sánchez AlvaradoA. BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development134 (22), 4043–4051 (2007).
  • Tasaki J , ShibataN, NishimuraOet al. ERK signaling controls blastema cell differentiation during planarian regeneration. Development138 (12), 2417–2427 (2011).
  • Umesono Y , TasakiJ, NishimuraYet al. The molecular logic for planarian regeneration along the anterior-posterior axis. Nature500 (7460), 73–76 (2013).
  • Ermakov AM , ErmakovaON, ErmolaevaSA. Study of possible involvement of MEK mitogen-activated protein kinase and TGF-β receptor in planarian regeneration processes using pharmacological inhibition analysis. Ontogenez45 (5), 355–360 (2014).
  • Peiris TH , OviedoNJ. Gap junction proteins: master regulators of the planarian stem cell response to tissue maintenance and injury. Biochim. Biophys. Acta1828 (1), 109–117 (2013).
  • Nogi T , LevinM. Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Dev. Biol.287 (2), 314–335 (2005).
  • Oviedo NJ , MorokumaJ, WalentekPet al. Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Dev. Biol.339 (1), 188–199 (2010).
  • Balestrini L , IsolaniME, PietraDet al. Berberine exposure triggers developmental effects on planarian regeneration. Sci. Rep.4, 4914 (2014).
  • Beane WS , MorokumaJ, AdamsDS, LevinM. A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chem. Biol.18 (1), 77–89 (2011).
  • Nogi T , ZhangD, ChanJD, MarchantJS. A novel biological activity of praziquantel requiring voltage-operated Ca2+ channel beta subunits: subversion of flatworm regenerative polarity. PLoS Negl. Trop. Dis.3 (6), e464 (2009).
  • Nogi T , YuanYE, SoroccoD, Perez-TomasR, LevinM. Eye regeneration assay reveals an invariant functional left-right asymmetry in the early bilaterian, Dugesia japonica. Laterality10 (3), 193–205 (2005).
  • Beane WS , MorokumaJ, LemireJM, LevinM. Bioelectric signaling regulates head and organ size during planarian regeneration. Development140 (2), 313–322 (2013).
  • Tanaka EM , ReddienPW. The cellular basis for animal regeneration. Dev. Cell21 (1), 172–185 (2011).
  • Brockes JP , KumarA. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science310 (5756), 1919–1923 (2005).
  • Yokoyama H , Yonei-TamuraS, EndoT, Izpisúa BelmonteJC, TamuraK, IdeH. Mesenchyme with fgf-10 expression is responsible for regenerative capacity in Xenopus limb buds. Dev. Biol.219 (1), 18–29 (2000).
  • Tseng A-S , BeaneWS, LemireJM, MasiA, LevinM. Induction of vertebrate regeneration by a transient sodium current. J. Neurosci.30 (39), 13192–13200 (2010).
  • Johnson SL , WestonJA. Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration. Genetics141 (4), 1583–1595 (1995).
  • Stoick-Cooper CL , WeidingerG, RiehleKJet al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development134 (3), 479–489 (2007).
  • Poss KD , ShenJ, NechiporukAet al. Roles for Fgf signaling during zebrafish fin regeneration. Dev. Biol.222 (2), 347–358 (2000).
  • Münch J , González-RajalA, de la PompaJL. Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration. Development140 (7), 1402–1411 (2013).
  • Koshiba K , KuroiwaA, YamamotoH, TamuraK, IdeH. Expression of Msx genes in regenerating and developing limbs of axolotl. J. Exp. Zool.282 (6), 703–714 (1998).
  • Akimenko MA , JohnsonSL, WesterfieldM, EkkerM. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development121 (2), 347–357 (1995).
  • McCusker CD , GardinerDM. Understanding positional cues in salamander limb regeneration: implications for optimizing cell-based regenerative therapies. Dis. Model. Mech.7 (6), 593–599 (2014).
  • Kikuchi K , HoldwayJE, MajorRJet al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell20 (3), 397–404 (2011).
  • Mathew LK , SenguptaS, FranzosaJAet al. Comparative expression profiling reveals an essential role for raldh2 in epimorphic regeneration. J. Biol. Chem.284 (48), 33642–33653 (2009).
  • Rojas-Muñoz A , RajadhykshaS, GilmourDet al. ErbB2 and ErbB3 regulate amputation-induced proliferation and migration during vertebrate regeneration. Dev. Biol.327 (1), 177–190 (2009).
  • Einhorn TA . The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. (355 Suppl.), S7–S21 (1998).
  • Dimitriou R , JonesE, McGonagleD, GiannoudisPV. Bone regeneration: current concepts and future directions. BMC Med.9 (1), 66 (2011).
  • Dallas SL , BonewaldLF. Dynamics of the transition from osteoblast to osteocyte. Ann. NY Acad. Sci.1192, 437–443 (2010).
  • Long F . Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol.13 (1), 27–38 (2012).
  • Rosen V . BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev.20 (5–6), 475–480 (2009).
  • Chen D , JiX, HarrisMAet al. Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J. Cell Biol.142 (1), 295–305 (1998).
  • Bessa PC , CasalM, ReisRL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J. Tissue Eng. Regen. Med.2 (2–3), 81–96 (2008).
  • Carbone EJ , RajpuraK, JiangT, LaurencinCT, LoKW-H. Regulation of bone regeneration with approved small molecule compounds. Adv. Regen. Biol.1, 25276 (2014).
  • Lo KW-H , AsheKM, KanHM, LaurencinCT. The role of small molecules in musculoskeletal regeneration. Regen. Med.7 (4), 535–549 (2012).
  • Metz JR , de VriezeE, LockE-J, SchultenIE, FlikG. Elasmoid scales of fishes as model in biomedical bone research. J. Appl. Ichthyol.28 (3), 382–387 (2012).
  • Stewart S , GomezAW, ArmstrongBE, HennerA, StankunasK. Sequential and opposing activities of Wnt and BMP coordinate zebrafish bone regeneration. Cell Rep.6 (3), 482–498 (2014).
  • De Vrieze E , ZethofJ, Schulte-MerkerS, FlikG, MetzJR. Identification of novel osteogenic compounds by an ex-vivo sp7: luciferase zebrafish scale assay. Bone74, 106–113 (2015).
  • Singh BN , Koyano-NakagawaN, GarryJP, WeaverCV. Heart of newt: a recipe for regeneration. J. Cardiovasc. Transl. Res.3 (4), 397–409 (2010).
  • Poss KD , WilsonLG, KeatingMT. Heart regeneration in zebrafish. Science298 (5601), 2188–2190 (2002).
  • Jopling C , SleepE, RayaM, MartíM, RayaA, Izpisúa BelmonteJC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature.464 (7288), 606–609 (2010).
  • Kikuchi K , HoldwayJE, WerdichAAet al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature464 (7288), 601–605 (2010).
  • Porrello ER , MahmoudAI, SimpsonEet al. Transient regenerative potential of the neonatal mouse heart. Science331 (6020), 1078–1080 (2011).
  • Bergmann O , BhardwajRD, BernardSet al. Evidence for cardiomyocyte renewal in humans. Science324 (5923), 98–102 (2009).
  • Choi W-Y , GemberlingM, WangJet al. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development140 (3), 660–666 (2013).
  • Huang Y , HarrisonMR, OsorioAet al. Igf signaling is required for cardiomyocyte proliferation during zebrafish heart development and regeneration. PLoS ONE8 (6), e67266 (2013).
  • Kikuchi K , PossKD. Cardiac regenerative capacity and mechanisms. Annu. Rev. Cell Dev. Biol.28, 719–741 (2012).
  • Chablais F , JazwinskaA. The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling. Development139 (11), 1921–1930 (2012).
  • Baines CP , MolkentinJD. STRESS signaling pathways that modulate cardiac myocyte apoptosis. J. Mol. Cell. Cardiol.38 (1), 47–62 (2005).
  • Cuevas P , ReimersD, CarcellerFet al. Fibroblast growth factor-1 prevents myocardial apoptosis triggered by ischemia reperfusion injury. Eur. J. Med. Res.2 (11), 465–408 (1997).
  • Engel FB , HsiehPCH, LeeRT, KeatingMT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl Acad. Sci. USA.103 (42), 15546–15551 (2006).
  • Golub JS , TongL, NgyuenTBet al. Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. J. Neurosci.32 (43), 15093–15105 (2012).
  • Cox BC , ChaiR, LenoirAet al. Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development141 (4), 816–829 (2014).
  • Stawicki TM , EsterbergR, HaileyDW, RaibleDW, RubelEW. Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death. Front. Cell. Neurosci.9, 46 (2015).
  • J⊘rgensen JM , MathiesenC. The avian inner ear. Continuous production of hair cells in vestibular sensory organs, but not in the auditory papilla. Naturwissenschaften75 (6), 319–320 (1988).
  • López-Schier H , HudspethAJ. A two-step mechanism underlies the planar polarization of regenerating sensory hair cells. Proc. Natl Acad. Sci. USA103 (49), 18615–18620 (2006).
  • Roberson DW , AlosiJA, CotancheDA. Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. J. Neurosci. Res.78 (4), 461–471 (2004).
  • Stone JS , RubelEW. Temporal, spatial, and morphologic features of hair cell regeneration in the avian basilar papilla. J. Comp. Neurol.417 (1), 1–16 (2000).
  • Warchol ME , CorwinJT. Regenerative proliferation in organ cultures of the avian cochlea: identification of the initial progenitors and determination of the latency of the proliferative response. J. Neurosci.16 (17), 5466–77 (1996).
  • Ma EY , RubelEW, RaibleDW. Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J. Neurosci.28 (9), 2261–2273 (2008).
  • Coffin AB , OuH, OwensKNet al. Chemical screening for hair cell loss and protection in the zebrafish lateral line. Zebrafish7 (1), 3–11 (2010).
  • Mackenzie SM , RaibleDW. Proliferative regeneration of zebrafish lateral line hair cells after different ototoxic insults. PLoS ONE7 (10), e47257 (2012).
  • He Y , CaiC, TangD, SunS, LiH. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts. Front. Cell. Neurosci.8, 382 (2014).
  • Head JR , GaciochL, PennisiM, MeyersJR. Activation of canonical Wnt/β-catenin signaling stimulates proliferation in neuromasts in the zebrafish posterior lateral line. Dev. Dyn.242 (7), 832–846 (2013).
  • Lenkowski JR , RaymondPA. Müller glia: stem cells for generation and regeneration of retinal neurons in teleost fish. Prog. Retin. Eye Res.40, 94–123 (2014).
  • Lamba D , KarlM, RehT. Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell.2 (6), 538–549 (2008).
  • Polosukhina A , LittJ, TochitskyIet al. Photochemical restoration of visual responses in blind mice. Neuron75 (2), 271–282 (2012).
  • Tochitsky I , PolosukhinaA, DegtyarVEet al. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron81 (4), 800–813 (2014).
  • Dyer MA , CepkoCL. Control of Müller glial cell proliferation and activation following retinal injury. Nat. Neurosci.3 (9), 873–880 (2000).
  • Jayaram H , JonesMF, EastlakeKet al. Transplantation of photoreceptors derived from human Muller glia restore rod function in the P23H rat. Stem Cells Transl. Med.3 (3), 323–333 (2014).
  • Singhal S , BhatiaB, JayaramHet al. Human Müller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation. Stem Cells Transl. Med.1 (3), 188–199 (2012).
  • Lawrence JM , SinghalS, BhatiaBet al. MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells25 (8), 2033–2043 (2007).
  • Craig SEL , CalinescuA-A, HitchcockPF. Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish. J. Ocul. Biol. Dis. Infor.1 (2–4), 73–84 (2008).
  • Wan J , ZhaoX-F, VojtekA, GoldmanD. Retinal injury, growth factors, and cytokines converge on β-catenin and pStat3 signaling to stimulate retina regeneration. Cell Rep.9 (1), 285–297 (2014).
  • Zhao X-F , EllingsenS, FjoseA. Labelling and targeted ablation of specific bipolar cell types in the zebrafish retina. BMC Neurosci.10, 107 (2009).
  • Montgomery JE , ParsonsMJ, HydeDR. A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors. J. Comp. Neurol.518 (6), 800–814 (2010).
  • Ariga J , WalkerSL, MummJS. Multicolor time-lapse imaging of transgenic zebrafish: visualizing retinal stem cells activated by targeted neuronal cell ablation. J. Vis. Exp.43, pii: 2093 (2010).
  • Walker SL , ArigaJ, MathiasJRet al. Automated reporter quantification in vivo: high-throughput screening method for reporter-based assays in zebrafish. PLoS ONE7 (1), e29916 (2012).
  • Fausett BV , GoldmanD. A role for alpha1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. J. Neurosci.26 (23), 6303–6313 (2006).
  • Bernardos RL , BarthelLK, MeyersJR, RaymondPA. Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J. Neurosci.27 (26), 7028–7040 (2007).
  • Fimbel SM , MontgomeryJE, BurketCT, HydeDR. Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J. Neurosci.27 (7), 1712–1724 (2007).
  • Fischer AJ , RehTA. Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat. Neurosci.4 (3), 247–252 (2001).
  • Gorsuch RA , HydeDR. Regulation of Müller glial dependent neuronal regeneration in the damaged adult zebrafish retina. Exp. Eye Res.123, 131–140 (2014).
  • Goldman D . Müller glial cell reprogramming and retina regeneration. Nat. Rev. Neurosci.15 (7), 431–442 (2014).
  • Ramachandran R , ZhaoX-F, GoldmanD. Ascl1a/Dkk/beta-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration. Proc. Natl Acad. Sci. USA108 (38), 15858–15863 (2011).
  • Huang S-MA , MishinaYM, LiuSet al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature461 (7264), 614–620 (2009).
  • Meyers JR , HuL, MosesA, KaboliK, PapandreaA, RaymondPA. β-Catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. Neural Dev.7, 30 (2012).
  • Zhu J , Luz-MadrigalA, HaynesT, ZavadaJ, BurkeAK, Del Rio-TsonisK. β-Catenin inactivation is a pre-requisite for chick retina regeneration. PLoS ONE9 (7), e101748 (2014).
  • Wan J , RamachandranR, GoldmanD. HB-EGF is necessary and sufficient for Müller Glia dedifferentiation and retina regeneration. Dev. Cell22 (2), 334–347 (2012).
  • Lemmon MA , SchlessingerJ. Cell signaling by receptor tyrosine kinases. Cell.141 (7), 1117–1134 (2010).
  • Conner C , AckermanKM, LahneM, HobgoodJS, HydeDR. Repressing notch signaling and expressing TNFα are sufficient to mimic retinal regeneration by inducing Müller glial proliferation to generate committed progenitor cells. J. Neurosci.34 (43), 14403–14419 (2014).
  • Nelson BR , UekiY, ReardonSet al. Genome-wide analysis of Müller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate. PLoS ONE6 (8), e22817 (2011).
  • Ramachandran R , ZhaoX-F, GoldmanD. Insm1a-mediated gene repression is essential for the formation and differentiation of Müller glia-derived progenitors in the injured retina. Nat. Cell Biol.14 (10), 1013–1023 (2012).
  • Nelson CM , GorsuchRA, BaileyTJ, AckermanKM, KassenSC, HydeDR. Stat3 defines three populations of Müller glia and is required for initiating maximal müller glia proliferation in the regenerating zebrafish retina. J. Comp. Neurol.520 (18), 4294–4311 (2012).
  • Bailey TJ , FossumSL, FimbelSM, MontgomeryJE, HydeDR. The inhibitor of phagocytosis, O-phospho-L-serine, suppresses Müller glia proliferation and cone cell regeneration in the light-damaged zebrafish retina. Exp. Eye Res.91 (5), 601–612 (2010).
  • Mathew LK , SenguptaS, KawakamiAet al. Unraveling tissue regeneration pathways using chemical genetics. J. Biol. Chem.282 (48), 35202–35210 (2007).
  • Oppedal D , GoldsmithMI. A chemical screen to identify novel inhibitors of fin regeneration in zebrafish. Zebrafish7 (1), 53–60 (2010).
  • Mundy G , GarrettR, HarrisSet al. Stimulation of bone formation in vitro and in rodents by statins. Science286 (5446), 1946–1949 (1999).
  • Darcy A , MeltzerM, MillerJet al. A novel library screen identifies immunosuppressors that promote osteoblast differentiation. Bone50 (6), 1294–1303 (2012).
  • Yuldashev MP , BatirovEK, VdovinAD, AbdullaevND. Structural study of glabrisoflavone, a novel isoflavone from Glycyrrhiza glabra L. Russ. J. Bioorganic Chem.26 (8), 784–786 (2000).
  • Alves H , DecheringK, Van BlitterswijkC, De BoerJ. High-throughput assay for the identification of compounds regulating osteogenic differentiation of human mesenchymal stromal cells. PLoS ONE6 (10), e26678 (2011).
  • Brey DM , MotlekarNA, DiamondSL, MauckRL, GarinoJP, BurdickJA. High-throughput screening of a small molecule library for promoters and inhibitors of mesenchymal stem cell osteogenic differentiation. Biotechnol. Bioeng.108 (1), 163–174 (2011).
  • Sadek H , HannackB, ChoeEet al. Cardiogenic small molecules that enhance myocardial repair by stem cells. Proc. Natl Acad. Sci. USA105 (16), 6063–6068 (2008).
  • Uosaki H , MagadumA, SeoKet al. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells. Circ. Cardiovasc. Genet.6 (6), 624–633 (2013).
  • Willems E , SpieringS, DavidovicsHet al. Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm. Circ. Res.109 (4), 360–364 (2011).
  • Namdaran P , ReinhartKE, OwensKN, RaibleDW, RubelEW. Identification of modulators of hair cell regeneration in the zebrafish lateral line. J. Neurosci.32 (10), 3516–3528 (2012).
  • Moon IS , SoJ-H, JungY-Met al. Fucoidan promotes mechanosensory hair cell regeneration following amino glycoside-induced cell death. Hear. Res.282 (1–2), 236–242 (2011).
  • Ku Y-C , RenaudNA, VeileRAet al. The transcriptome of utricle hair cell regeneration in the avian inner ear. J. Neurosci.34 (10), 3523–3535 (2014).
  • McCullagh KJA , PerlingeiroRCR. Coaxing stem cells for skeletal muscle repair. Adv. Drug Deliv. Rev.84, 198–207 (2014).
  • Rahimov F , KunkelLM. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. J. Cell Biol.201 (4), 499–510 (2013).
  • Tennyson CN , KlamutHJ, WortonRG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat. Genet.9 (2), 184–190 (1995).
  • Dumont NA , WangYX, RudnickiMA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development142 (9), 1572–1581 (2015).
  • Waugh TA , HorstickE, HurJet al. Fluoxetine prevents dystrophic changes in a zebrafish model of Duchenne muscular dystrophy. Hum. Mol. Genet.23 (17), 4651–4662 (2014).
  • Kawahara G , KunkelLM. Zebrafish based small molecule screens for novel DMD drugs. Drug Discov. Today. Technol.10 (1), e91–e96 (2013).
  • Bouwens L , RoomanI. Regulation of pancreatic beta-cell mass. Physiol. Rev.85 (4), 1255–1270 (2005).
  • Andersson O , AdamsBA, YooDet al. Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab.15 (6), 885–894 (2012).
  • Curado S , AndersonRM, JungblutB, MummJ, SchroeterE, StainierDYR. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev. Dyn.236 (4), 1025–1035 (2007).
  • Pisharath H , RheeJM, SwansonMA, LeachSD, ParsonsMJ. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech. Dev.124 (3), 218–229 (2007).
  • Annes JP , RyuJH, LamKet al. Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication. Proc. Natl Acad. Sci. USA109 (10), 3915–3920 (2012).
  • Fredholm BB . Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ.14 (7), 1315–1323 (2007).
  • Rovira M , HuangW, YusuffSet al. Chemical screen identifies FDA-approved drugs and target pathways that induce precocious pancreatic endocrine differentiation. Proc. Natl Acad. Sci. USA108 (48), 19264–19269 (2011).
  • Tsuji N , NinovN, DelawaryMet al. Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation. PLoS ONE9 (8), e104112 (2014).
  • Wang G , RajpurohitSK, DelaspreaFet al. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass. Elife4, e08261 (2015).
  • Inglese J , AuldDS, JadhavAet al. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl Acad. Sci. USA103 (31), 11473–11478 (2006).
  • Samara C , RohdeCB, GillelandCL, NortonS, HaggartySJ, YanikMF. Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proc. Natl Acad. Sci. USA107 (43), 18342–18347 (2010).
  • Franzini RM , NeriD, ScheuermannJ. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries. Acc. Chem. Res.47 (4), 1247–1255 (2014).
  • Hojo H , IgawaK, OhbaSet al. Development of high-throughput screening system for osteogenic drugs using a cell-based sensor. Biochem. Biophys. Res. Commun.376 (2), 375–379 (2008).
  • Sylvia G , LenhoffAT. Hydra and the Birth of Experimental Biology, 1744: Abraham Trembley's Memoirs Concerning the Natural History of a Type of Freshwater Polyp with Arms Shaped Like Horns. Boxwood Press, CA, USA (1986).
  • Morgan T . Regeneration: Columbia University Biological Series VII. OsbornHF, WilsonEB ( Eds). Macmillan Publishers, New York, USA (1901).
  • Worley MI , SetiawanL, HariharanIK. Regeneration and transdetermination in drosophila imaginal discs. Annu. Rev. Genet.46, 289–310 (2012).
  • Kunkel JG . Cockroach molting. II. The nature of regeneration-induced delay of molting hormone secretion. Biol. Bull.153 (1), 145–162 (1977).
  • Sánchez Alvarado A , TsonisPA. Bridging the regeneration gap: genetic insights from diverse animal models. Nat. Rev. Genet.7 (11), 873–884 (2006).
  • Slack JMW , LinG, ChenY. Molecular and cellular basis of regeneration and tissue repair: the Xenopus tadpole: a new model for regeneration research. Cell Mol. Life Sci.65 (1), 54–63 (2008).
  • Gemberling M , BaileyT, HydeD, PossK. The zebrafish as a model for complex tissue regeneration. Trends Genet.29 (11), 611–620 (2013).
  • Stone JS , CotancheDA. Hair cell regeneration in the avian auditory epithelium. Int. J. Dev. Biol.51 (6–7), 633–647 (2007).
  • Lehoczky JA , RobertB, TabinCJ. Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. Proc. Natl Acad. Sci. USA108 (51), 20609–20614 (2011).
  • Yimlamai D , ChristodoulouC, GalliGGet al. Hippo pathway activity influences liver cell fate. Cell157 (6), 1324–1338 (2014).
  • Nieto-Diaz M , Pita-ThomasDW, Munoz-GaldeanoTet al. Deer antler innervation and regeneration. Front. Biosci. (Landmark Ed.)17, 1389–1401 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.