499
Views
2
CrossRef citations to date
0
Altmetric
Review

Rational, Computer-Enabled Peptide Drug Design: Principles, Methods, Applications and Future Directions

, , , &
Pages 2173-2193 | Published online: 29 Oct 2015

References

  • Fosgerau K , HoffmannT. Peptide therapeutics: current status and future directions. Drug Discov. Today20 (1), 122–128 (2015).
  • Kaspar AA , ReichertJM. Future directions for peptide therapeutics development. Drug Discov. Today18 (17–18), 807–817 (2013).
  • Bashiruddin NK , SugaH. Construction and screening of vast libraries of natural product-like macrocyclic peptides using in vitro display technologies. Curr. Opin. Chem. Biol.24, 131–138 (2015).
  • Lian W , UpadhyayaP, RhodesCA, LiuY, PeiD. Screening bicyclic peptide libraries for protein-protein interaction inhibitors: discovery of a tumor necrosis factor-alpha antagonist. J. Am. Chem. Soc.135 (32), 11990–11995 (2013).
  • Hu Y , BajorathJ. High-resolution view of compound promiscuity. F1000 Research2, 144 (2013).
  • Nicolaou CA , BrownN. Multi-objective optimization methods in drug design. Drug Discov. Today Technol.10 (3), e427–e435 (2013).
  • Frank AO , VangamudiB, FeldkampMDet al. Discovery of a potent stapled helix peptide that binds to the 70N domain of replication protein A. J. Med. Chem.57 (6), 2455–2461 (2014).
  • Koolpe M , BurgessR, DailM, PasqualeEB. EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J. Biol. Chem.280 (17), 17301–17311 (2005).
  • Hosseini M , JiangL, SorensenHPet al. Elucidation of the contribution of active site and exosite interactions to affinity and specificity of peptidylic serine protease inhibitors using non-natural arginine analogs. Mol. Pharmacol.80 (4), 585–597 (2011).
  • Kim D , LeeIH, KimSet al. A specific STAT3-binding peptide exerts antiproliferative effects and antitumor activity by inhibiting STAT3 phosphorylation and signaling. Cancer Res.74 (8), 2144–2151 (2014).
  • London N , GullaS, KeatingAE, Schueler-FurmanO. In silico and in vitro elucidation of BH3 binding specificity toward Bcl-2. Biochemistry51 (29), 5841–5850 (2012).
  • Chen Z , HuY, HongJet al. Toxin acidic residue evolutionary function-guided design of de novo peptide drugs for the immunotherapeutic target, the Kv1.3 channel. Sci. Rep.5, 9881 (2015).
  • Quartararo JS , WuP, KritzerJA. Peptide bicycles that inhibit the Grb2 SH2 domain. ChemBioChem13 (10), 1490–1496 (2012).
  • Williams BA , DiehneltCW, BelcherPet al. Creating protein affinity reagents by combining peptide ligands on synthetic DNA scaffolds. J. Am. Chem. Soc.131 (47), 17233–17241 (2009).
  • Diehnelt CW , ShahM, GuptaNet al. Discovery of high-affinity protein binding ligands--backwards. PLoS ONE5 (5), e10728 (2010).
  • Brauer F , SchmidtK, ZahnRCet al. A rationally engineered anti-HIV peptide fusion inhibitor with greatly reduced immunogenicity. Antimicrob. Agents Chemother.57 (2), 679–688 (2013).
  • Bennett CL , JacobS, HymesJ, UsvyatLA, MadduxFW. Anaphylaxis and hypotension after administration of peginesatide. N. Engl. J. Med.370 (21), 2055–2056 (2014).
  • Weinstock MT , FrancisJN, RedmanJS, KayMS. Protease-resistant peptide design-empowering nature's fragile warriors against HIV. Biopolymers98 (5), 431–442 (2012).
  • Baeriswyl V , HeinisC. Phage selection of cyclic peptide antagonists with increased stability toward intestinal proteases. Protein Eng. Des. Sel.26 (1), 81–89 (2013).
  • Galati R , VerdinaA, FalascaG, ChersiA. Increased resistance of peptides to serum proteases by modification of their amino groups. Z. Naturforsch.58 (7–8), 558–561 (2003).
  • Nguyen LT , ChauJK, PerryNA, De BoerL, ZaatSA, VogelHJ. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS ONE5 (9), (2010).
  • Heard KR , WuW, LiYet al. A general method for making peptide therapeutics resistant to serine protease degradation: application to dipeptidyl peptidase IV substrates. J. Med. Chem.56 (21), 8339–8351 (2013).
  • Walensky LD , BirdGH. Hydrocarbon-stapled peptides: principles, practice, and progress. J. Med. Chem.57 (15), 6275–6288 (2014).
  • Howell SM , FiaccoSV, TakahashiTTet al. Serum stable natural peptides designed by mRNA display. Sci. Rep.4, 6008 (2014).
  • Sharma S , SinghR, RanaS. Bioactive peptides: a review. Int. J. Bioautomation15 (4), 223–250 (2011).
  • Tsomaia N . Peptide therapeutics: targeting the undruggable space. Eur. J. Med. Chem.94, 459–470 (2015).
  • Ano R , KimuraY, ShimaM, MatsunoR, UenoT, AkamatsuM. Relationships between structure and high-throughput screening permeability of peptide derivatives and related compounds with artificial membranes: application to prediction of Caco-2 cell permeability. Bioorg. Med. Chem.12 (1), 257–264 (2004).
  • Rezai T , BockJE, ZhouMV, KalyanaramanC, LokeyRS, JacobsonMP. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. J. Am. Chem. Soc.128 (43), 14073–14080 (2006).
  • Rezai T , YuB, MillhauserGL, JacobsonMP, LokeyRS. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc.128 (8), 2510–2511 (2006).
  • White TR , RenzelmanCM, RandACet al. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat. Chem. Biol.7 (11), 810–817 (2011).
  • Rafi SB , HearnBR, VedanthamP, JacobsonMP, RensloAR. Predicting and improving the membrane permeability of peptidic small molecules. J. Med. Chem.55 (7), 3163–3169 (2012).
  • Rand AC , LeungSS, EngHet al. Optimizing PK properties of cyclic peptides: the effect of side chain substitutions on permeability and clearance. MedChemComm3 (10), 1282–1289 (2012).
  • Bockus AT , LexaKW, PyeCRet al. Probing the physicochemical boundaries of cell permeability and oral bioavailability in lipophilic macrocycles inspired by natural products. J. Med. Chem.58 (11), 4581–4589 (2015).
  • Hewitt WM , LeungSS, PyeCRet al. Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. J. Am. Chem. Soc.137 (2), 715–721 (2015).
  • Wang CK , NorthfieldSE, SwedbergJEet al. Exploring experimental and computational markers of cyclic peptides: charting islands of permeability. Eur. J. Med. Chem.97, 202–213 (2015).
  • Kwon YU , KodadekT. Quantitative comparison of the relative cell permeability of cyclic and linear peptides. Chem. Biol.14 (6), 671–677 (2007).
  • Mikol V , KallenJ, PfluglG, WalkinshawMD. X-ray structure of a monomeric cyclophilin A-cyclosporin A crystal complex at 2.1 A resolution. J. Mol. Biol.234 (4), 1119–1130 (1993).
  • Hughes JD , BlaggJ, PriceDAet al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett.18 (17), 4872–4875 (2008).
  • Altschuh D , VixO, ReesB, ThierryJC. A conformation of cyclosporin A in aqueous environment revealed by the X-ray structure of a cyclosporin-Fab complex. Science256 (5053), 92–94 (1992).
  • Sugahara KN , TeesaluT, KarmaliPPet al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science328 (5981), 1031–1035 (2010).
  • Roth L , AgemyL, KotamrajuVRet al. Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene31 (33), 3754–3763 (2012).
  • Alberici L , RothL, SugaharaKNet al. De novo design of a tumor-penetrating peptide. Cancer Res.73 (2), 804–812 (2013).
  • Teesalu T , SugaharaKN, RuoslahtiE. Tumor-penetrating peptides. Front. Oncol.3, 216 (2013).
  • Pang HB , BraunGB, FrimanTet al. An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat. Commun.5, 4904 (2014).
  • Sugahara KN , BraunGB, De MendozaTHet al. Tumor-penetrating iRGD peptide inhibits metastasis. Mol. Cancer Ther.14 (1), 120–128 (2015).
  • Lu J , ChengY, ZhangGet al. Increased expression of neuropilin 1 in melanoma progression and its prognostic significance in patients with melanoma. Mol. Med. Rep.12 (2), 2668–2676 (2015).
  • Barr MP , GraySG, GatelyKet al. Vascular endothelial growth factor is an autocrine growth factor, signaling through neuropilin-1 in non-small cell lung cancer. Mol. Cancer14 (1), 45 (2015).
  • Jiang H , XiQ, WangF, SunZ, HuangZ, QiL. Increased expression of neuropilin 1 is associated with epithelial ovarian carcinoma. Mol. Med. Rep.12 (2), 2114–2120 (2015).
  • Chaudhary B , ElkordE. Novel expression of Neuropilin 1 on human tumor-infiltrating lymphocytes in colorectal cancer liver metastases. Expert Opin. Ther. Targets19 (2), 147–161 (2015).
  • Tortorella S , KaragiannisTC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J. Membrane Biol.247 (4), 291–307 (2014).
  • Fang L , WangM, GouS, LiuX, ZhangH, CaoF. Combination of amino acid/dipeptide with nitric oxide donating oleanolic acid derivatives as PepT1 targeting antitumor prodrugs. J. Med. Chem.57 (3), 1116–1120 (2014).
  • Han X , SunJ, WangY, HeZ. PepT1, ASBT-linked prodrug strategy to improve oral bioavailability and tissue targeting distribution. Curr. Drug Metabol.16 (1), 71–83 (2015).
  • Jin SE , JinHE, HongSS. Targeting L-type amino acid transporter 1 for anticancer therapy: clinical impact from diagnostics to therapeutics. Expert Opin. Ther. Targets doi:10.1517/14728222.2015.1044975 (2015) ( Epub ahead of print).
  • Kapoor P , SinghH, GautamA, ChaudharyK, KumarR, RaghavaGP. TumorHoPe: a database of tumor homing peptides. PLoS ONE7 (4), e35187 (2012).
  • Fazen CH , ValentinD, FairchildTJ, DoyleRP. Oral delivery of the appetite suppressing peptide hPYY(3–36) through the vitamin B12 uptake pathway. J. Med. Chem.54 (24), 8707–8711 (2011).
  • Clardy-James S , ChepurnyOG, LeechCA, HolzGG, DoyleRP. Synthesis, characterization and pharmacodynamics of vitamin-B12-conjugated glucagon-like peptide-1. ChemMedChem8 (4), 582–586 (2013).
  • Moos T , MorganEH. Transferrin and transferrin receptor function in brain barrier systems. Cell. Mol. Neurobiol.20 (1), 77–95 (2000).
  • Staquicini FI , OzawaMG, MoyaCAet al. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J. Clin. Invest.121 (1), 161 (2011).
  • Demeule M , ReginaA, CheCet al. Identification and design of peptides as a new drug delivery system for the brain. J. Pharmacol. Exp. Ther.324 (3), 1064–1072 (2008).
  • Demeule M , BeaudetN, RéginaAet al. Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties. J. Clin. Invest.124 (3), 1199 (2014).
  • Regina A , DemeuleM, CheCet al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br. J. Pharmacol.155 (2), 185–197 (2008).
  • Kumar P , WuH, McBrideJLet al. Transvascular delivery of small interfering RNA to the central nervous system. Nature448 (7149), 39–43 (2007).
  • Liu Y , GuoY, AnSet al. Targeting caspase-3 as dual therapeutic benefits by RNAi facilitating brain-targeted nanoparticles in a rat model of Parkinson's disease. PLoS ONE8 (5), e62905 (2013).
  • Alvarez-Erviti L , SeowY, YinH, BettsC, LakhalS, WoodMJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol.29 (4), 341–345 (2011).
  • Chen W , ZhanC, GuBet al. Targeted brain delivery of itraconazole via RVG29 anchored nanoparticles. J. Drug Target.19 (3), 228–234 (2011).
  • Van Dorpe S , BronselaerA, NielandtJet al. Brainpeps: the blood-brain barrier peptide database. Brain Struct. Funct.217 (3), 687–718 (2012).
  • Hughes FM Jr , ShanerBE, BrowerJO, WoodsRJ, DixTA. Development of a Peptide-derived orally-active kappa-opioid receptor agonist targeting peripheral pain. Open Med. Chem. J.7, 16–22 (2013).
  • Bockus AT , LexaKW, PyeCRet al. Probing the physicochemical boundaries of cell permeability and oral bioavailability in lipophilic macrocycles inspired by natural products. J. Med. Chem.58 (11), 4581–4589 (2015).
  • Nielsen DS , HoangHN, LohmanRJet al. Improving on nature: making a cyclic heptapeptide orally bioavailable. Angew. Chem. Int. Ed. Engl.53 (45), 12059–12063 (2014).
  • Ogawa T , MiyamaeT, MurayamaKet al. Synthesis and structure-activity relationships of an orally available and long-acting analgesic peptide, N(alpha)-amidino-Tyr-D-Arg-Phe-MebetaAla-OH (ADAMB). J. Med. Chem.45 (23), 5081–5089 (2002).
  • Hess S , LindeY, OvadiaOet al. Backbone cyclic peptidomimetic melanocortin-4 receptor agonist as a novel orally administrated drug lead for treating obesity. J. Med. Chem.51 (4), 1026–1034 (2008).
  • Campana C , RegazziMB, BuggiaI, MolinaroM. Clinically significant drug interactions with cyclosporin. An update. Clin. Pharmacokinet.30 (2), 141–179 (1996).
  • Kuroda D , ShiraiH, JacobsonMP, NakamuraH. Computer-aided antibody design. Protein Eng. Des. Sel.25 (10), 507–521 (2012).
  • Rentzsch R , RenardBY. Docking small peptides remains a great challenge: an assessment using AutoDock Vina. Brief Bioinform. doi:10.1093/bib/bbv008 (2015) ( Epub ahead of print).
  • Pike DH , NandaV. Empirical estimation of local dielectric constants: toward atomistic design of collagen mimetic peptides. Biopolymers104 (4), 360–370 (2015).
  • Audie J , SwansonJ. Recent work in the development and application of protein-peptide docking. Future Med. Chem.4 (12), 1619–1644 (2012).
  • Das R . Four small puzzles that Rosetta doesn't solve. PLoS ONE6 (5), e20044 (2011).
  • TumorHoPe – Tumor Homing Peptide Database . http://crdd.osdd.net/raghava/tumorhope.
  • Volpe DA . Drug-permeability and transporter assays in Caco-2 and MDCK cell lines. Future Med. Chem.3 (16), 2063–2077 (2011).
  • Brainpeps . http://brainpeps.ugent.be.
  • Hansen MR , VillarHO, FeyfantE. Development of an informatics platform for therapeutic protein and peptide analytics. J. Chem. Inform. Model.53 (10), 2774–2779 (2013).
  • Altoris - SARvision . www.chemapps.com/sarvision-biologics.
  • Thevenet P , ShenY, MaupetitJ, GuyonF, DerreumauxP, TufferyP. PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res.40, W288–W293 (2012).
  • PEP-FOLD Server . http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD.
  • Vanhee P , ReumersJ, StricherFet al. PepX: a structural database of non-redundant protein-peptide complexes. Nucleic Acids Res.38, D545–D551 (2010).
  • PepX . www.switchlab.org/bioinformatics/pepx.
  • Das AA , SharmaOP, KumarMS, KrishnaR, MathurPP. PepBind: a comprehensive database and computational tool for analysis of protein-peptide interactions. Genomics Proteomics Bioinform.11 (4), 241–246 (2013).
  • PepBind . http://pepbind.bicpu.edu.in.
  • London N , Movshovitz-AttiasD, Schueler-FurmanO. The structural basis of peptide-protein binding strategies. Structure18 (2), 188–199 (2010).
  • London N , RavehB, CohenE, FathiG, Schueler-FurmanO. Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions. Nucleic Acids Res.39, W249–W253 (2011).
  • FlexPepDock . http://flexpepdock.furmanlab.cs.huji.ac.il.
  • Raveh B , LondonN, ZimmermanL, Schueler-FurmanO. Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS ONE6 (4), e18934 (2011).
  • Li H , LuL, ChenR, QuanL, XiaX, LuQ. PaFlexPepDock: parallel ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta. PLoS ONE9 (5), e94769 (2014).
  • Ben-Shimon A , NivMY. AnchorDock: blind and flexible anchor-driven peptide docking. Structure23 (5), 929–940 (2015).
  • Trellet M , MelquiondAS, BonvinAM. A unified conformational selection and induced fit approach to protein-peptide docking. PLoS ONE8 (3), e58769 (2013).
  • HADDOCK . http://haddocking.org.
  • Kurcinski M , JamrozM, BlaszczykM, KolinskiA, KmiecikS. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res.43 (W1), W419–W424 (2015).
  • CABS-Dock . http://biocomp.chem.uw.edu.pl/CABSdock.
  • Lee H , HeoL, LeeMS, SeokC. GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res.43 (W1), W431–W435 (2015).
  • GalaxyPepDock . http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=PEPDOCK.
  • Yan C , ZouX. Predicting peptide binding sites on protein surfaces by clustering chemical interactions. J. Comput. Chem.36 (1), 49–61 (2015).
  • Verschueren E , VanheeP, RousseauF, SchymkowitzJ, SerranoL. Protein-peptide complex prediction through fragment interaction patterns. Structure21 (5), 789–797 (2013).
  • Saladin A , ReyJ, ThevenetP, ZachariasM, MoroyG, TufferyP. PEP-SiteFinder: a tool for the blind identification of peptide binding sites on protein surfaces. Nucleic Acids Res.42, W221–W226 (2014).
  • PEP-Site Finder . http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-SiteFinder.
  • Unal EB , GursoyA, ErmanB. VitAL: Viterbi algorithm for de novo peptide design. PLoS ONE5 (6), e10926 (2010).
  • Bhattacherjee A , WallinS. Exploring protein-peptide binding specificity through computational peptide screening. PLoS Comput. Biol.9 (10), e1003277 (2013).
  • Rivera CG , RoscaEV, PandeyNB, KoskimakiJE, BaderJS, PopelAS. Novel peptide-specific quantitative structure-activity relationship (QSAR) analysis applied to collagen IV peptides with antiangiogenic activity. J. Med. Chem.54 (19), 6492–6500 (2011).
  • Du QS , HuangRB, ChouKC. Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design. Curr. Protein Peptide Sci.9 (3), 248–260 (2008).
  • Du QS , MaY, XieNZ, HuangRB. Two-level QSAR network (2L-QSAR) for peptide inhibitor design based on amino acid properties and sequence positions. SAR QSAR Environ. Res.25 (10), 837–851 (2014).
  • Du QS , WeiYT, PangZW, ChouKC, HuangRB. Predicting the affinity of epitope-peptides with class I MHC molecule HLA-A*0201: an application of amino acid-based peptide prediction. Protein Eng. Des. Sel.20 (9), 417–423 (2007).
  • Du QS , XieNZ, HuangRB. Recent development of Peptide drugs and advance on theory and methodology of Peptide inhibitor design. Med. Chem.11 (3), 235–247 (2015).
  • Bhonsle JB , ClarkT, BartolottiL, HicksRP. A brief overview of antimicrobial peptides containing unnatural amino acids and ligand-based approaches for peptide ligands. Curr. Top. Med. Chem.13 (24), 3205–3224 (2013).
  • Giguere S , LavioletteF, MarchandMet al. Machine learning assisted design of highly active peptides for drug discovery. PLoS Comput. Biol.11 (4), e1004074 (2015).
  • Beaufays J , LinsL, ThomasA, BrasseurR. In silico predictions of 3D structures of linear and cyclic peptides with natural and non-proteinogenic residues. J. Peptide Sci.18 (1), 17–24 (2012).
  • Klepeis JL , Lindorff-LarsenK, DrorRO, ShawDE. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. Struct. Biol.19 (2), 120–127 (2009).
  • Lindorff-Larsen K , PianaS, DrorRO, ShawDE. How fast-folding proteins fold. Science334 (6055), 517–520 (2011).
  • Denisiuk A , SchubertV, WolterFE, IrranE, TrouillasP, SussmuthRD. Conformational investigation of antibiotic proximicin by X-ray structure analysis and quantum studies suggest a stretched conformation of this type of gamma-peptide. Bioorg. Med. Chem.21 (12), 3582–3589 (2013).
  • Han C , WangJ. Influence of an unnatural amino acid side chain on the conformational dynamics of peptides. ChemPhysChem13 (6), 1522–1534 (2012).
  • Improta R , VitaglianoL, EspositoL. Bond distances in polypeptide backbones depend on the local conformation. Acta Crystallogr. D Biol. Crystallogr.71 (Pt 6), 1272–1283 (2015).
  • Haslach EM , HuangH, DirainMet al. Identification of tetrapeptides from a mixture based positional scanning library that can restore nM full agonist function of the L106P, I69T, I102S, A219V, C271Y, and C271R human melanocortin-4 polymorphic receptors (hMC4Rs). J. Med. Chem.57 (11), 4615–4628 (2014).
  • Walshe VA , HattotuwagamaCK, DoytchinovaIA, FlowerDR. A dataset of experimental HLA-B*2705 peptide binding affinities. Dataset Papers in Science2014, 4 (2014).
  • Fransson R , SkoldC, KratzJMet al. Constrained H-Phe-Phe-NH2 analogues with high affinity to the substance P 1–7 binding site and with improved metabolic stability and cell permeability. J. Med. Chem.56 (12), 4953–4965 (2013).
  • Tal-Gan Y , HurevichM, KleinSet al. Backbone cyclic peptide inhibitors of protein kinase B (PKB/Akt). J. Med. Chem.54 (14), 5154–5164 (2011).
  • Phan J , LiZ, KasprzakAet al. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. J. Biol. Chem.285 (3), 2174–2183 (2010).
  • Smadbeck J , PetersonMB, ZeeBMet al. De novo peptide design and experimental validation of histone methyltransferase inhibitors. PLoS ONE9 (4), e95535 (2014).
  • Feng S , ZouL, NiQet al. Modulation, bioinformatic screening, and assessment of small molecular peptides targeting the vascular endothelial growth factor receptor. Cell Biochem. Biophys.70 (3), 1913–1921 (2014).
  • Roberts KE , CushingPR, BoisguerinP, MaddenDR, DonaldBR. Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLoS Comput. Biol.8 (4), e1002477 (2012).
  • Kilian TM , KlotingN, BergmannRet al. Rational design of dual peptides targeting ghrelin and Y receptors to regulate food intake and body weight. J. Med. Chem.58 (10), 4180–4193 (2015).
  • Wang CK , GruberCW, CemazarMet al. Molecular grafting onto a stable framework yields novel cyclic peptides for the treatment of multiple sclerosis. ACS Chem. Biol.9 (1), 156–163 (2014).
  • Fung HK , FloudasCA, TaylorMS, ZhangL, MorikisD. Toward full-sequence de novo protein design with flexible templates for human beta-defensin-2. Biophys. J.94 (2), 584–599 (2008).
  • Bellows-Peterson ML , FungHK, FloudasCAet al. De novo peptide design with C3a receptor agonist and antagonist activities: theoretical predictions and experimental validation. J. Med. Chem.55 (9), 4159–4168 (2012).
  • Halai R , Bellows-PetersonML, BranchettWet al. Derivation of ligands for the complement C3a receptor from the C-terminus of C5a. Eur. J. Pharmacol.745, 176–181 (2014).
  • Gorham RD Jr , ForestDL, KhouryGAet al. New compstatin peptides containing N-terminal extensions and non-natural amino acids exhibit potent complement inhibition and improved solubility characteristics. J. Med. Chem.58 (2), 814–826 (2015).
  • Bellows ML , TaylorMS, ColePAet al. Discovery of entry inhibitors for HIV-1 via a new de novo protein design framework. Biophys. J.99 (10), 3445–3453 (2010).
  • Wang CK , NorthfieldSE, CollessBet al. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients. Proc. Natl Acad. Sci. USA111 (49), 17504–17509 (2014).
  • Jagadish K , CamareroJA. Cyclotides, a promising molecular scaffold for peptide-based therapeutics. Biopolymers94 (5), 611–616 (2010).
  • Poth AG , ChanLY, CraikDJ. Cyclotides as grafting frameworks for protein engineering and drug design applications. Biopolymers100 (5), 480–491 (2013).
  • Wong CT , RowlandsDK, WongCHet al. Orally active peptidic bradykinin B1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angew. Chem. Int. Ed. Engl.51 (23), 5620–5624 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.