979
Views
2
CrossRef citations to date
0
Altmetric
Review

Oligonucleotide Therapeutics: Chemistry, Delivery and Clinical Progress

&
Pages 2221-2242 | Published online: 29 Oct 2015

References

  • Zamecnik PC , StephensonML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl Acad. Sci. USA75, 280–284 (1978).
  • Zamecnik PC , StephensonML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl Acad. Sci. USA75, 285–288 (1978).
  • Roehr B . Fomivirsen approved for CMV retinitis. J. Int. Assoc. Physicians AIDS Care4 (10), 14–16 (1998).
  • Jones D . The long march of antisense. Nat. Rev. Drug Discov.10 (6), 401–402 (2011).
  • Watts JK , CoreyDR. Silencing disease genes in the laboratory and the clinic. J. Pathol.226, 365–379 (2012).
  • Hair P , CameronF, McKeageK. Mipomersen sodium: first global approval. Drugs73, 487–493 (2013).
  • Sharma VK , RungtaP, PrasadAK. Nucleic acid therapeutics: basic concepts and recent developments. RSC Adv.4, 16618–16631 (2014).
  • Ng EW , ShimaDT, CaliasP, CunninghamETJr, GuyerDR, AdamisAP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov.5, 123–132 (2006).
  • Deleavey GF , DamhaMJ. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol.19, 937–954 (2012).
  • Yu RZ , GrundyJS, GearyRS. Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin. Drug Metab. Toxicol.9, 169–182 (2013).
  • Shima C , SakaguchiH, GomiFet al. Complications in patients after intravitreal injection of bevacizumab. Acta Ophthalmol.86, 372–376 (2008).
  • Anderson KP , FoxMC, Brown-DriverV, MartinMJ, AzadRF. Inhibition of human cytomegalovirus immediate-early gene expression by an antisense oligonucleotide complementary to immediate-early RNA. Antimicrob. Agents Chemother.40, 2004–2011 (1996).
  • Apte RS . Pegaptanib sodium for the treatment of age-related macular degeneration. Expert Opin. Pharmacother.9, 499–508 (2008).
  • Kanwar JR , ShankaranarayananJS, GurudevanS, KanwarRK. Aptamer-based therapeutics of the past, present and future: from the perspective of eye-related diseases. Drug Discov. Today19, 1309–1321 (2014).
  • Shima D , CaliasP, AdamisAP. WO2005020972A2 (2012).
  • Feingold KR . Does inhibition of apolipoprotein B synthesis produce foie gras?J. Lipid Res.51, 877–878 (2010).
  • Geary RS , NorrisD, YuR, BennettCF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug. Deliv. Rev.87, 46–51 (2015).
  • Sharma VK , SharmaRK, SinghSK. Antisense oligonucleotides: modifications and clinical trials. Med. Chem. Comm.5, 1454–1471 (2014).
  • Bennett CF , SwayzeEE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol.50, 259–293 (2010).
  • Alam MR , DixitV, KangHet al. Cellular delivery of siRNA and antisense oligonucleotides via receptor-mediated endocytosis. Expert Opin. Drug Deliv.8, 435–449 (2011).
  • Yu B , ZhaoX, LeeLJ, LeeRJ. Targeted delivery systems for oligonucleotide therapeutics. AAPS J.11, 195–203 (2009).
  • Robbins M , JudgeA, MacLachlanI. siRNA and innate immunity. Oligonucleotides19, 89–102 (2009).
  • Rautio J , KumpulainenH, HeimbachTet al. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov.7, 255–270 (2008).
  • Grijalvo S , AvinoA, EritjaR. Oligonucleotide delivery: a patent review (2010 – 2013). Expert Opin. Ther. Pat.24, 801–819 (2014).
  • MacLeod AR . Antisense therapies for cancer: bridging the pharmacogenomic divide. Drug Discov, Today Ther. Strateg.10, e157 (2013).
  • Bedikian AY , GarbeC, ConryR, LebbeC, GrobJJ. Genasense Melanoma Study Group. Dacarbazine with or without oblimersen (a Bcl-2 antisense oligonucleotide) in chemotherapy-naive patients with advanced melanoma and low-normal serum lactate dehydrogenase: ‘The AGENDA trial’. Melanoma Res.24, 237–243 (2014).
  • Regulus. A single subcutaneous dose of 2mg/kg of RG-101, Regulus’ wholly-owned, GalNac-conjugated anti-miR targeting microRNA-122, demonstrates 4.1 log10 mean viral load reduction as monotherapy at day 29 in patients with varied HCV genotypes and treatment history. http://ir.regulusrx.com/releasedetail.cfm?ReleaseID=877462.
  • Meade BR , GogoiK, HamilASet al. Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat. Biotechnol.32, 1256–1261 (2014).
  • Zamecnik PC , GoodchildJ, TaguchiY, SarinPS. Inhibition of replication and expression of human T-cell lymphotropic virus type III in cultured cells by exogenous synthetic oligonucleotides complementary to viral RNA. Proc. Natl Acad. Sci. USA83, 4143–4146 (1986).
  • Matsukura M , ShinozukaK, ZonGet al. Phosphorothioate analogs of oligodeoxynucleotides: inhibitors of replication and cytopathic effects of human immunodeficiency virus. Proc. Natl Acad. Sci. USA84, 7706–7710 (1987).
  • Agrawal S , GoodchildJ, CiveiraMP, ThorntonAH, SarinPS, ZamecnikPC. Oligodeoxynucleoside phosphoramidates and phosphorothioates as inhibitors of human immunodeficiency virus. Proc. Natl Acad. Sci. USA85, 7079–7083 (1988).
  • Matsukura M , ZonG, ShinozukaKet al. Regulation of viral expression of human immunodeficiency virus in vitro by an antisense phosphorothioate oligodeoxynucleotide against rev (art/trs) in chronically infected cells. Proc. Natl Acad. Sci. USA86, 4244–4248 (1989).
  • Mickelfield J . Backbone modification of nucleic acids: synthesis, structure and therapeutic applications. Curr. Med. Chem.8, 1157–1179 (2001).
  • Jain ML , BruicePY, SzabóIE, BruiceTC. Incorporation of positively charged linkages into DNA and RNA backbones: a novel strategy for antigene and antisense agents. Chem. Rev.112, 1284–309 (2012).
  • Eckstein F . Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther.24, 374–387 (2014).
  • Eckstein F . Phosphorothioate Oligodeoxynucleotides: what is their origin and what is unique about them?Antisense Nucleic Acid Drug Dev.10, 117–121 (2000).
  • Stein CA , SubasingheC, ShinozukaK, CohenJS. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res.16, 3209–3221 (1988).
  • Geary RS . Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin. Drug Met.5, 381–391 (2009).
  • Pirollo KF , RaitA, SleerLS, ChangEH. Antisense therapeutics: from theory to clinical practice. Pharmacol. Ther.99, 55–77 (2003).
  • Lima WF , PrakashTP, MurrayHMet al. Single-stranded siRNAs activate RNAi in animals. Cell150, 883–894 (2012).
  • Hu J , LiuJ, NarayanannairKJet al. Allele-selective inhibition of mutant atrophin-1 expression by duplex and single-stranded RNAs. Biochemistry53, 4510–4518 (2014).
  • Boczkowska M , GugaP, StecWJ. Stereodefined phosphorothioate analogues of DNA: relative thermodynamic stability of the model PS-DNA/DNA and PS-DNA/RNA complexes. Biochemistry41, 12483–12487 (2002).
  • Stec WJ , CierniewskiCS, OkruszekAet al. Stereodependent inhibition of plasminogen activator inhibitor type 1 by phosphorothioate oligonucleotides: proof of sequence specificity in cell culture and in vivo rat experiments. Antisense Nucleic Acid Drug Dev.7, 567–573 (1997).
  • Koziolkiewicz M , KrakowiakA, KwinkowskiM, BoczkowskaM, StecWJ. Stereodifferentiation-the effect of P chirality of oligo(nucleoside phosphorothioates) on the activity of bacterial RNase H. Nucleic Acids Res.23, 5000–5005 (1995).
  • Gagnon KT , WattsJK. Meeting Report: 10th Annual Meeting of the Oligonucleotide Therapeutics Society. Nucleic Acid Ther.24, 428–434 (2014).
  • Mergny JL , LacroixL. Analysis of thermal melting curves. Oligonucleotides13, 515–537 (2003).
  • LeBlanc DA , MordenKM. Thermodynamic characterization of deoxyribooligonucleotide duplexes containing bulges. Biochemistry30, 4042–4047 (1991).
  • Puglisi JD , TinocoIJr. Absorbance melting curves of RNA. Methods Enzymol.180, 304–325 (1989).
  • Matveeva OV , MathewsDH, TsodikovADet al. Thermodynamic criteria for high hit rate antisense oligonucleotide design. Nucleic Acids Res.31, 4989–4994 (2003).
  • Crothers DM , ZimmBH. Theory of the melting transition of synthetic polynucleotides: evaluation of the stacking free energy. J. Mol. Biol.9, 1–9 (1964).
  • Tinoco I Jr , BorerPN, DenglerBet al. Improved estimation of secondary structure in ribonucleic acids. Nat. New Biol.246, 40–41 (1973).
  • Kierzek E , MathewsDH, CiesielskaA, TurnerDH, KierzekR. Nearest neighbor parameters for Watson–Crick complementary heteroduplexes formed between 2’-O-methyl RNA and RNA oligonucleotides. Nucleic Acids Res.34, 3609–3614 (2006).
  • Mathews DH . Using OligoWalk to identify efficient siRNA sequences. Methods Mol. Biol.629, 109–121 (2010).
  • Lu ZJ , MathewsDH. OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics. Nucleic Acids Res.36 (Web Server issue), W104–W108 (2008).
  • Monia BP , LesnikEA, GonzalezCet al. Evaluation of 2’-modified oligonucleotides containing 2’-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem.268, 14514–14522 (1993).
  • Stanton R , SciabolaS, SalattoCet al. Chemical modification study of antisense gapmers. Nucleic Acid Ther.22, 344–359 (2012).
  • Seth PP , SiwkowskiA, AllersonCRet al. Short antisense oligonucleotides with novel 2’,-4’ conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals. J. Med. Chem.52, 10–13 (2009).
  • Ferrari N , SeguinR. Oligonucleotide inhibitors with chimeric backbone and 2-amino-2’-deoxyadenosine. PCT/CA2012/000169 (2012).
  • Sipova H , SpringerT, RejmanDet al. 5’-O-methylphosphonate nucleic acids – new modified DNAs that increase the Escherichia coli RNase H cleavage rate of hybrid duplexes. Nucleic Acids Res.42, 5378–5389 (2014).
  • Isobe H , FujinoT, YamazakiN, NiekowskiMG, NakamuraE. Triazole-linked analogue of deoxyribonucleic acid (TLDNA): design, synthesis, and double-strand formation with natural DNA. Org. Lett.10, 3729–3732 (2008).
  • Varizhuk AM , KaluzhnyDN, NovikovRAet al. Synthesis of triazole-linked oligonucleotides with high affinity to DNA complements and an analysis of their compatibility with biosystems. J. Org. Chem.78, 5964–5969 (2013).
  • Varizhuk A , ChizhovA, FlorentievV. Synthesis and hybridization data of oligonucleotide analogs with triazole internucleotide linkages, potential antiviral and antitumor agents. Bioorg. Chem.39, 127–131 (2011).
  • Périgaud C , GosselinG, LefebvreIet al. Rational design for cytosolic delivery of nucleoside monphosphates: “SATE” and “DTE” as enzyme-labile transient phosphate protecting groups. Bioorg. Med. Chem. Lett.3, 2521–2526 (1993).
  • Gao S , Dagnaes-HansenF, NielsenEJet al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol. Ther.17, 1225–1233 (2009).
  • Prakash TP . An overview of sugar-modified oligonucleotides from antisense therapeutics. Chem. Biodivers.8, 1616–1641 (2011).
  • Wengel J . Synthesis of 3′-C- and 4′-C-branched oligodeoxynucleotides and the development of locked nucleic acid (LNA). Acc. Chem. Res.32, 301–306 (1999).
  • Martín-Pintado N , Yahyaee-AnzahaeeM, Campos-OlivasRet al. The solution structure of double helical arabino nucleic acids (ANA and 2’F-ANA): effect of arabinoses in duplex-hairpin interconversion. Nucleic Acids Res.40, 9329–9339 (2012).
  • Bramsen JB , KjemsJ. Chemical modification of small interfering RNA. Methods Mol. Biol.721, 77–103 (2011).
  • Martínez-Montero S , DeleaveyGF, Martín-PintadoN, FakhouryJF, GonzálezC, DamhaMJ. Locked 2’-deoxy-2’,4’-difluororibo modified nucleic acids: thermal stability, structural studies, and siRNA activity. ACS Chem. Biol. doi:10.1021/acschembio.5b00218 (2015) ( Epub ahead of print).
  • Whitehead KA , DahlmanJE, LangerRS, AndersonDG. Silencing or stimulation? siRNA delivery and the immune system. Annu. Rev. Chem. Biomol. Eng.2, 77–96 (2011).
  • Kaur H , BabuBR, MaitiS. Perspectives on chemistry and therapeutic applications of locked nucleic acid (LNA). Chem. Rev.107, 4672–4697 (2007).
  • Lindow M , KauppinenS. Discovering the first microRNA-targeted drug. J. Cell Biol.199, 407–412 (2012).
  • Obad S , Dos SantosCO, PetriAet al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet.43, 371–378 (2011).
  • Wahlestedt C , SalmiP, GoodLet al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc. Natl Acad. Sci. USA97, 5633–5638 (2000).
  • Stein CA , HansenJB, LaiJet al. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res38, e3 (2010).
  • Pedersen L , HagedornPH, LindholmMW, LindowM. A kinetic model explains why shorter and less affine enzyme-recruiting oligonucleotides can be more potent. Mol. Ther. Nucleic Acids.3, e149 (2014).
  • Zhou C , LiuY, AndaloussiM, BadgujarN, PlashkevychO, ChattopadhyayaJ. Fine tuning of electrostatics around the internucleotidic phosphate through incorporation of modified 2’,4’-carbocyclic-LNAs and -ENAs leads to significant modulation of antisense properties. J. Org. Chem.74, 118–134 (2009).
  • Morita K , HasegawaC, KanekoMet al. 2’-O,4’-C-ethylene-bridged nucleic acids (ENA): highly nuclease-resistant and thermodynamically stable oligonucleotides for antisense drug. Bioorg. Med. Chem. Lett.12, 73–76 (2002).
  • Rahman SMA , SekiS, ObikaS, YoshikawaH, MiyashitaK, ImanishiT. Design, synthesis and properties of 2’,4’-BNA(NC): a bridged nucleic acid analogue. J. Am. Chem. Soc.130, 4886–4896 (2008).
  • Giannaris P , DamhaMJ. Hybridization properties of oligoarabinonucleotides. Can. J. Chem.72, 909–918 (1994).
  • Noronha AM , WildsCJ, LokC-Net al. Synthesis and biophysical properties of arabinonucleic acids (ANA): circular dichroic spectra, melting temperature, and ribonuclease H susceptibility of ANA·RNA hybrid duplexes. Biochemistry39, 7050–7062 (2000).
  • Lima WF , NicholsJG, WuHet al. Structural requirements at the catalytic site of the heteroduplex substrate for human RNase H1 catalysis. J. Biol. Chem.279, 36317–36326 (2004).
  • Watts JK , DamhaMJ. 2’F-arabinonucleic acids (2’F-ANA) – history, properties, and new frontiers. Can. J. Chem.86, 641–656 (2008).
  • Wilds CJ , DamhaMJ. 2’-deoxy-2’-fluoro-β-D-arabinonucleosides and oligonucleotides (2’F-ANA): synthesis and physicochemical studies. Nucleic Acids Res.28, 3625–3635 (2000).
  • Ferrari N , BergeronD, Tedeschia-Let al. Characterization of antisense oligonucleotides comprising 2’-deoxy-2’-fluoro-beta-D-arabinonucleic acid (FANA): specificity, potency, and duration of activity. Ann. NY Acad. Sci.1082, 91–102 (2006).
  • Martínez-Montero S , DeleaveyGF, Dierker-ViikAet al. Synthesis and properties of 2’-deoxy-2’,4’-difluoroarabinose-modified nucleic acids. J. Org. Chem.80, 3083–3091 (2015).
  • S⊘rensen MD , Kværn⊘L, BryldTet al. Alpha-L-ribo-configured locked nucleic acid (alpha-L-LNA): synthesis and properties. J. Am. Chem. Soc.124, 2164–2176 (2002).
  • Rajwanshi VK , HakanssonAE, SorensenMDet al. The eight stereoisomers of LNA (locked nucleic acid): a remarkable family of strong RNA binding molecules. Angew. Chem. Int. Ed. Engl.39, 1656–1659 (2000).
  • Nielsen JT , SteinPC, PetersenM. NMR structure of an α-L-LNA:RNA hybrid: structural implications for RNase H recognition. Nucleic Acids Res.31, 5858–5867 (2003).
  • Frieden M , ChristensenSM, MikkelsenNDet al. Expanding the design horizon of antisense oligonucleotides with alpha-l-LNA. Nucleic Acids Res.31, 6365–6372 (2003).
  • Fluiter K , FriedenM, VreijlingJet al. On the in vitro and in vivo properties of four locked nucleic acid nucleotides incorporated into an anti-H-Ras antisense oligonucleotide. Chembiochem.6, 1104–1109 (2005).
  • Seth PP , JazayeriA, YuJ, AllersonCR, BhatB, SwayzeEE. Structure activity relationships of α-L-LNA modified phosphorothioate gapmer antisense oligonucleotides in animals. Mol. Ther. Nucleic Acids18, e47 (2012).
  • Declercq R , Van AerschotA, ReadRJ, HerdewijnP, van MeerveltL. Crystal structure of double helical hexitol nucleic acids. J. Am. Chem. Soc.124 (6), 928–933 (2002).
  • Egli M , PallanPS, AllersonCRet al. Synthesis, improved antisense activity and structural rationale for the divergent RNA affinities of 3’-fluoro hexitol nucleic acid (FHNA and Ara-FHNA) modified oligonucleotides. J. Am. Chem. Soc.133, 16642–16649 (2011).
  • Van Aerschot A , MeldgaardM, SchepersGet al. Improved hybridisation potential of oligonucleotides comprising O-methylated anhydrohexitol nucleoside congeners. Nucleic Acids Res.29, 4187–4194 (2001).
  • Verbeure B , LescrinierE, WangJ, HerdewijnP. RNase H mediated cleavage of RNA by cyclohexene nucleic acid (CeNA). Nucleic Acids Res.29, 4941–4947 (2001).
  • Wang J , VerbeureB, LuytenIet al. Cyclohexene nucleic acids (CeNA): serum stable oligonucleotides that activate RNase H and increase duplex stability with complementary RNA. J. Am. Chem. Soc.122, 8595–8602 (2000).
  • Sabatino D , DamhaMJ. Oxepane nucleic acids: synthesis, characterization, and properties of oligonucleotides bearing a seven-membered carbohydrate ring. J. Am. Chem. Soc.129, 8259–8270 (2007).
  • Iversen PL . Phosphorodiamidate morpholino oligomers: favorable properties for sequence-specific gene inactivation. Curr. Opin. Mol. Ther.3, 235–238 (2001).
  • Mendell JR , Rodino-KlapacLR, SahenkZet al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann. Neurol.74, 637–647 (2013).
  • Iversen PL , WarrenTK, WellsJBet al. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and Marburg virus infections. Viruses4, 2806–2830 (2012).
  • Sarepta Therapeutics. www.sarepta.com/pipeline/avi-7100-influenza.
  • Nulf CJ , CoreyD. Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). Nucleic Acids Res.32, 3792–3798 (2004).
  • Sazani P , GemignaniF, KangSHet al. Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat. Biotechnol.20, 1228–1233 (2002).
  • Siwkowski AM , MalikL, EsauCCet al. Identification and functional validation of PNAs that inhibit murine CD40 expression by redirection of splicing. Nucleic Acids Res.32, 2695–2706 (2004).
  • Abes S , TurnerJJ, IvanovaGDet al. Efficient splicing correction by PNA conjugation to an R6-penetratin delivery peptide. Nucleic Acids Res.35, 4495–4502 (2002).
  • He G , RapireddyS, BahalR, SahuB, LyDH. Strand invasion of extended, mixed-sequence B-DNA by gammaPNAs. J. Am. Chem. Soc.131, 12088–12090 (2009).
  • Englund EA , AppellaDH. Gamma-substituted peptide nucleic acids constructed from L-lysine are a versatile scaffold for multifunctional display. Angew. Chem. Int. Edit. Engl.46, 1414–1418 (2007).
  • Herdewijn P . Heterocyclic modifications of oligonucleotide and antisense technology. Antisense Nucleic Acid Drug Dev.10, 297–310 (2000).
  • Peacock H , KannanA, BealPA, BurrowsCJ. Chemical modification of siRNA bases to probe and enhance RNA interference. J. Org. Chem.76, 7295–7300 (2011).
  • Verma S , EcksteinF. Modified oligonucleotides: synthesis and strategy for users. Annu. Rev. Biochem.67, 99–134 (1998).
  • Freier SM , AltmannKH. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res.25, 4429–4443 (1997).
  • Takeda K , AkiraS. Toll-like receptors in innate immunity. Int. Immunol.17, 1–14 (2005).
  • Dalpke A , FrankJ, PeterM, HeegK. Activation of toll-like receptor 9 by DNA from different bacterial species. Infect. Immun.74, 940–946 (2006).
  • Henry S , SteckerK, BrooksD, MonteithD, ConklinB, BennettCF. Chemically modified oligonucleotides exhibit decreased immune stimulation in mice. J. Pharmacol. Exp. Ther.292, 468–479 (2000).
  • Sagi J , SzemzöA, OtvösL, VorlickovaM, KyprJ. Destabilization of the duplex and the high-salt Z-form of poly(dG-methyl5dC) by substitution of ethyl for the 5-methyl group. Int. J. Biol. Macromol.13, 329–336 (1991).
  • Froehler BC , WadwaniS, TerhorstTJ, GerrardSR. Oligodeoxynucleotides containing C-5 propyne analogs of 2’-deoxyuridine and 2’-deoxycytidine. Tetrahedron Lett.33, 5307–5310 (1992).
  • Wagner RW , MatteucciMD, LewiJG, GutierrezAJ, MouldsC, FroehlerBC. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science260, 1510–1513 (1993).
  • Moulds C , LewisJG, FroehlerBCet al. Site and mechanism of antisense inhibition by C-5 propyne oligonucleotides. Biochemistry34, 5044–5053 (1995).
  • Shen L , SiwkowskiA, WancewiczEVet al. Evaluation of C-5 propynyl pyrimidine-containing oligonucleotides in vitro and in vivo. Antisense Nucleic Acid Drug Dev.13, 129–142 (2003).
  • Kumar P , ØstergaardME, BaralBet al. Synthesis and biophysical properties of C5-functionalized LNA (locked nucleic acid). J. Org. Chem.79, 5047–5061 (2014).
  • Morihiro K , HasegawaO, MoriS, TsunodaS, ObikaS. C5-azobenzene-functionalized locked nucleic acid uridine: isomerization properties, hybridization ability, and enzymatic stability. Org. Biomol. Chem.13, 5209–5214 (2015).
  • Guenther DC , KumarP, AndersonBA, HrdlickaPJ. C5-amino acid functionalized LNA: positively poised for antisense applications. Chem. Commun. (Camb.)50, 9007–9009 (2014).
  • Kaura M , GuentherDC, HrdlickaPJ. Carbohydrate-functionalized locked nucleic acids: oligonucleotides with extraordinary binding affinity, target specificity, and enzymatic stability. Org. Lett.16, 3308–3311 (2014).
  • Flanagan WM , WagnerRW, GrantD, LinKY, MatteucciMD. Cellular penetration and antisense activity by a phenoxazine-substituted heptanucleotide. Nat. Biotechnol.17, 48–52 (1999).
  • Lin K-Y , MatteucciMD. A cytosine analog capable of clamp-like binding to a guanine in helical nucleic acids. J. Am. Chem. Soc.120, 8531–8532 (1998).
  • Wilds CJ , MaierMA, TereshkoV, ManoharanM, EgliM. Direct observation of a cytosine analogue that forms five hydrogen bonds to guanosine: guanidino G-clamp. Angew. Chem. Int. Ed. Engl.41, 115–117 (2002).
  • Wilds CJ , MaierMA, ManoharanM, EgliM. Structural basis for recognition of guanosine by a synthetic tricyclic cytosine analogue: guanidinium G-clamp. Helv. Chim. Acta86, 966–978 (2003).
  • Gryaznov SM , SchultzRG. Stabilization of DNA:DNA and DNA:RNA duplex by substitution of 2-deoxyadenosine with 2-deoxy-2-aminoadenosine. Tetrahedron Lett.36, 2489–2492 (1994).
  • Müller RH , ShegokarR, KeckCM. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr. Drug Discov. Technol.8, 207–227 (2011).
  • Ballarín-González B , HowardKA. Polycation-based nanoparticle delivery of RNAi therapeutics: adverse effects and solutions. Adv. Drug Deliv. Rev.64, 1717–1729 (2012).
  • Kichler A , ZaunerW, OgrisM, WagnerE. Influence of the DNA complexation medium on the transfection efficiency of lipospermine/DNA particles. Gene Ther.5, 855–860 (1998).
  • Dalby B , CatesS, HarrisAet al. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and highthroughput applications. Methods33, 95–103 (2004).
  • Draghici B , IliesMA. Synthetic nucleic acid delivery systems: present and perspectives. J. Med. Chem.58, 4091–4130 (2015).
  • Shim G . Application of cationic liposomes for delivery of nucleic acids. Asian J. Pharm. Sci.8, 72–80 (2013).
  • Ma B , ZhangS, JiangH, ZhaoB, LvH. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J. Control Release123, 184–194 (2007).
  • Rädler JO , KoltoverI, SaldittT, SafinyaCR. Structure of DNa–cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science275, 810–814 (1997).
  • Koltover I , SaldittT, RädlerJO, SafinyaCR. An inverted hexagonal phase of cationic liposome–DNA complexes related to DNA release and delivery. Science281, 78–81 (1998).
  • Leal C , BouxseinNF, EwertKK, SafinyaCR. Highly efficient gene silencing activity of siRNA embedded in a nanostructured gyroid cubic lipid matrix. J. Am. Chem. Soc.132, 16841–16847 (2010).
  • Leal C , EwertKK, ShiraziRS, BouxseinNF, SafinyaCR. Nanogyroids incorporating multivalent lipids: enhanced membrane charge density and pore forming ability for gene silencing. Langmuir27, 7691–7697 (2011).
  • Ewert K , AhmadA, EvansHM, SchmidtHW, SafinyaCR. Efficient synthesis and cell-transfection properties of a new multivalent cationic lipid for nonviral gene delivery. J. Med. Chem.45, 5023–5029 (2002).
  • Lin AJ , SlackNL, AhmadA, GeorgeCX, SamuelCE, SafinyaCR. Three-dimensional imaging of lipid gene-carriers: membrane charge density controls universal transfection behavior in lamellar cationic liposome-DNA complexes. Biophys. J.84, 3307–3316 (2003).
  • Avanti® Polar Lipids, Inc. www.avantilipids.com/index.php?option=com_content&view=article&id=2422&Itemid=521&catnumber=890000.
  • Aliabadi HM , LandryB, SunC, TangT, UludağH. Supramolecular assemblies in functional siRNA delivery: where do we stand?Biomaterials33, 2546–2569 (2012).
  • Daka A , PeerD. RNAi-based nanomedicines for targeted personalized therapy. Adv. Drug Deliv. Rev.64, 1508–1521 (2012).
  • Mui BL , TamYK, JayaramanMet al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids2, e139 (2013).
  • Ogris M , BrunnerS, SchüllerS, KircheisR, WagnerE. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther.6, 595–605 (1999).
  • Maeda H , WuJ, SawaT, MatsumuraY, HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release65, 271–284 (2000).
  • Morrissey DV , LockridgeJA, ShawLet al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol.23, 1002–1007 (2005).
  • Zimmermann TS , LeeAC, AkincAet al. RNAi-mediated gene silencing in non-human primates. Nature441, 111–114 (2006).
  • Semple SC , AkincA, ChenJet al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol.28, 172–176 (2010).
  • Geall AJ , VermaA, OttenGRet al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl Acad. Sci. USA109, 14604–14609 (2012).
  • Ozcan G , OzpolatB, ColemanRL, SoodAK, Lopez-BeresteinG. Preclinical and clinical development of siRNa-based therapeutics. Adv. Drug Deliv. Rev.87, 108–119 (2015).
  • Ganta S , DevalapallyH, ShahiwalaA, AmijiM. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release126, 187–204 (2008).
  • Niu Y , SunL, CrooksRM. Determination of the intrinsic proton binding constants for poly(amidoamine) dendrimers via potentiometric pH titration. Macromolecules36, 5725–5731 (2003).
  • Liang W , LamJKW. Endosomal escape pathways for non-viral nucleic acid delivery systems. In : Molecular Regulation of Endocytosis. CeresaB ( Ed.). InTech, Croatia, 421–467 (2012).
  • Yessine M-A , MeierC, PetereitH-U, LerouxJ-C. On the role of methacrylic acid copolymers in the intracellular delivery of antisense oligonucleotides. Eur. J. Pharm. Biopharm.63, 1–10 (2006).
  • Convertine AJ , DiabC, PrieveMet al. pH-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules11, 2904–2911 (2011).
  • Kim SH , JeongJH, MokH, LeeSH, KimSW, ParkTG. Folate receptor targeted delivery of polyelectrolyte complex micelles prepared from ODN–PEG–folate conjugate and cationic lipids. Biotechnol. Prog.23, 232–237 (2007).
  • Palanca-Wessels MC , ConvertineAJ, Cutler-StromRet al. Anti-CD22 antibody targeting of pH-responsive micelles enhances small interfering RNA delivery and gene silencing in lymphoma cells. Mol. Ther.19, 1529–1537 (2011).
  • Oishi M , NagasakiY, ItakaK, NishiyamaN, KataokaK. Lactosylated poly(ethylene glycol)–siRNA conjugate through acid-labile β-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc.127, 1624–1625 (2005).
  • Sethuraman V , LeeM, BaeY. A biodegradable pH-sensitive micelle system for targeting acidic solid tumors. Pharm. Res.25, 657–666 (2008).
  • Farokhzad OC , KarpJM, LangerR. Nanoparticle–aptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv.3, 311–324 (2006).
  • Petrova NS , ChernikovIV, MeschaninovaMIet al. Carrier-free cellular uptake and the gene-silencing activity of the lipophilic siRNAs is strongly affected by the length of the linker between siRNA and lipophilic group. Nucleic Acids Res.40, 2330–2344 (2012).
  • AVI Biopharma, Inc. WO2012150960 A1 (2012).
  • Zhu H , LiJ, ZhangXB, YeM, TanW. Nucleic acid aptamer-mediated drug delivery for targeted cancer therapy. Chem Med Chem.10, 39–45 (2015).
  • Ristau BT , O'KeefeDS, BacichDJ. The prostate-specific membrane antigen: lessons and current clinical implications from 20 years of research. Urol. Oncol.32, 272–279 (2014).
  • McNamara JO 2nd , AndrechekEO, WangYet al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol.24, 1005–1015 (2006).
  • Chu TC , TwuKY, EllingtonAD, LevyM. Aptamer mediated siRNA delivery. Nucleic Acids Res.34, e73 (2006).
  • Zhou J , SwiderskiP, LiHet al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res.37, 3094–3109 (2009).
  • Dassie JP , LiuXY, ThomasGSet al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMa-expressing tumors. Nat. Biotech.27, 839–846 (2009).
  • Grewal PK . The Ashwell–Morell receptor. Methods Enzymol.479, 223–241 (2010).
  • Nair JK , WilloughbyJLS, ChanAet al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi- mediated gene silencing. J. Am. Chem. Soc.136, 16958–16961 (2014).
  • Rajeev KG , NairJK, JayaramanMet al. Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent N-acetylgalactosamine elicits robust gene silencing in vivo. Chembiochem16, 903–908 (2015).
  • Matsuda S , KeiserK, NairJKet al. siRNA conjugates carrying sequentially assembled trivalent nacetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem. Biol.10, 1181–1187 (2015).
  • Prakash TP , GrahamMJ, YuJet al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res.42, 8796–8807 (2014).
  • Østergaard ME , YuJ, KinbergerGAet al. Efficient synthesis and biological evaluation of 5’-GalNAc conjugated antisense oligonucleotides. Bioconjug. Chem.26 (8), 1451–1455 (2015).
  • Patwa A , GissotA, BestelI, BarthelemyP. Hybrid lipid oligonucleotide conjugates: synthesis, self-assemblies and biomedical applications. Chem. Soc. Rev.40, 5844–5854 (2011).
  • Lorenz C , HadwigerP, JohnM, VornlocherHP, UnverzagtC. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg. Med. Chem. Lett.14, 4975–4977 (2004).
  • Sylentis SAU . Sphingosine-bound siRNA. US2012142765 A1 (2012).
  • Wolfrum C , ShiS, JayaprakashKNet al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol.25, 1149–1157 (2007).
  • Trajkovski M , HausserJ, SoutschekJet al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature474, 649–653 (2011).
  • Nishina K , UnnoT, UnoYet al. Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol. Ther.16, 734–740 (2008).
  • Nishina T , NumataJ, NishinaKet al. Chimeric antisense oligonucleotide conjugated to α-tocopherol. Mol. Ther. Nucleic Acids.4, e220 (2015).
  • Heitz F , MorrisMC, DivitaG. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br. J. Pharmacol.157, 195–206 (2009).
  • Lundberg P , El-AndaloussiS, SutluT, JohanssonH, LangelU. Delivery of short interfering RNA using endosomolytic cellpenetrating peptides. FASEB J.21, 2664–2671 (2007).
  • Fei L , RenL, ZaroJL, ShenW-C. The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. J. Drug Target19, 675–680 (2011).
  • Lebleu B , MoultonHMet al. Cell penetrating peptide conjugates of steric block oligonucleotides. Adv. Drug Deliv. Rev.60, 517–529 (2008).
  • Goyenvalle A , BabbsA, PowellDet al. Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping. Mol. Ther.18, 198–205 (2009).
  • Koppelhus U , ShiraishiT, ZacharV, PankratovaS, NielsenPE. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide–lipid (CatLip) domain. Bioconjugate Chem.19, 1526–1534 (2008).
  • Poillot C , BichraouiH, TisseyreCet al. Small efficient cell-penetrating peptides derived from scorpion toxin maurocalcine. J. Biol. Chem.287, 17331–17342 (2012).
  • Betts C , SalehAF, ArzumanovAAet al. Pip6-PMO, a new generation of peptide–oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol. Ther. Nucleic Acids1, e38 (2012).
  • Mirkin CA , LetsingerRL, MucicRC, StorhoffJJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature382, 607–609 (1996).
  • Rosi NL , GiljohannDA, ThaxtonCS, Lytton-JeanAK, HanMS, MirkinCA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science312, 1027–1030 (2006).
  • Seferos DS , PrigodichAE, GiljohannDA, PatelPC, MirkinCA. Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett.9, 308–311 (2009).
  • Lytton-Jean AK , LangerR, AndersonDG. Five years of siRNA delivery: spotlight on gold nanoparticles. Small7, 1932–1937 (2011).
  • Giljohann DA , SeferosDS, PatelPC, MillstoneJE, RosiNL, MirkinCA. Oligonucleotide loading determines cellular uptake of DNa-modified gold nanoparticles. Nano Lett.7, 3818–3821 (2007).
  • Giljohann DA , SeferosDS, PrigodichAE, PatelPC, MirkinCA. Gene regulation with polyvalent siRNa-nanoparticle conjugates. J. Am. Chem. Soc.131, 2072–2073 (2009).
  • Giljohann DA , SeferosDS, DanielWL, MassichMD, PatelPC, MirkinCA. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. Engl.49, 3280–3294 (2010).
  • Patel PC , GiljohannDA, DanielWL, ZhengD, PrigodichAE, MirkinCA. Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug. Chem.21, 2250–2256 (2010).
  • Choi CH , HaoL, NarayanSP, AuyeungE, MirkinCA. Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc. Natl Acad. Sci. USA110, 7625–7630 (2013).
  • Zhang K , HaoL, HurstSJ, MirkinCA. Antibody-linked spherical nucleic acids for cellular targeting. J. Am. Chem. Soc.134, 16488–16491 (2012).
  • Lee JS , Lytton-JeanAK, HurstSJ, MirkinCA. Silver nanoparticle–oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett.7, 2112–2115 (2007).
  • Hilliard LR , ZhaoXJ, TanWH. Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal. Chim. Acta470, 51–56 (2002).
  • Cutler JI , ZhengD, XuX, GiljohannDA, MirkinCA. Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett.10, 1477–1480 (2010).
  • Medintz IL , BertiL, PonsTet al. A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates. Nano Lett.7, 1741–1748 (2007).
  • Williams SC . Spherical nucleic acids: a whole new ball game. Proc. Natl Acad. Sci. USA110, 13231–13233 (2013).
  • Banga RJ , ChernyakN, NarayanSP, NguyenST, MirkinCA. Liposomal spherical nucleic acids. J. Am. Chem. Soc.136, 9866–9869 (2014).
  • Radovic-Moreno AF , ChernyakN, MaderCCet al. Immunomodulatory spherical nucleic acids. Proc. Natl Acad. Sci. USA112, 3892–3897 (2015).
  • Jinek M , ChylinskiK, FonfaraI, HauerM, DoudnaJA, CharpentierE. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337, 816–821 (2012).
  • O'Connell MR , OakesBL, SternbergSH, East-SeletskyA, KaplanM, DoudnaJA. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature516, 263–266 (2014).
  • Barrangou R , BirminghamA, WiemannS, BeijersbergenRL, HornungV, SmithAV. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res.43, 3407–3419 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.