78
Views
0
CrossRef citations to date
0
Altmetric
Review

Specific Chemical Modification of Bacterial Type I Dehydroquinase: Opportunities for Drug Discovery

Pages 2371-2383 | Published online: 24 Nov 2015

References

  • Fair RJ , TorY. Antibiotics and bacterial resistance in the 21st century. Perspect. Med. Chem.6, 25–63 (2014).
  • Appelbaum PC . 2012 and beyond: potential for the start of a second pre-antibiotic era?J. Antimicrob. Chemother.67 (9), 2062–2068 (2012).
  • Mckenna M . Antibiotic resistance: the last resort. Nature499 (7459), 394–396 (2013).
  • Fischbach MA , WalshCT. Antibiotics for emerging pathogens. Science325 (5944), 1089–1093 (2009).
  • Walsh C . Molecular mechanisms that confer antibacterial drug resistance. Nature406 (6797), 775–781 (2000).
  • Boucher HW , TalbotGH, BradleyJSet al. Bad bugs, no drugs: no ESKAPE! an update from the Infectious Diseases Society of America. Clin. Infect. Dis.48 (1), 1–12 (2009).
  • Amin AN , DeruelleD. Healthcare-associated infections, infection control and the potential of new antibiotics in development in the USA. Future Microbiol.10 (6), 1049–1062 (2015).
  • Cosgrove SE , CarmeliY. The impact of antimicrobial resistance on health and economic outcomes. Clin. Infect. Dis.36 (11), 1433–1437 (2003).
  • Zaoutis TE . Antibiotic resistance: who will pay the bills?Clin. Infect. Dis.49 (8), 1185–1186 (2009).
  • Fernandes P . The global challenge of new clases of antibacterial agents: an industry perspective. Curr. Opin. Pharmacol.24 (X), 7–11 (2015).
  • Levy SB , MarshallB. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med.10 (12 Suppl.), S122–S129 (2004).
  • Projan SJ . New (and not so new) antibacterial targets – from where and when will the novel drugs come?Curr. Opin. Pharmacol.2 (5), 513–544 (2002).
  • Payne DJ , GwynnMN, HolmeDJ, PomplianoDL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov.6, 29–40 (2007).
  • Rasko DA , SperandioV. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev.9, 117–128 (2010).
  • Clatworthy AE , PiersonE, HungDT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol.3 (9), 541–548 (2007).
  • Cegelski L , MarshallGR, EldridgeGR, HultgrenSJ. The biology and future prospects of antivirulence therapies. Nat. Rev.6 (1), 17–27 (2008).
  • Alksne LE . Virulence as a target for antimicrobial chemotherapy. Expert Opin. Investig. Drugs11 (6), 1149–1159 (2002).
  • Allen RC , PopatR, DiggleSP, BrownSP. Targeting virulence: can we make evolution-proof drugs?Nat. Rev. Microbiol.12, 300–308 (2014).
  • O'Connell KM G , HodgkinsonJT, SoreHF, WelchM, SalmondGP C, SpringDR. Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials. Angew. Chem. Int. Ed. Engl.52 (41), 10706–10733 (2013).
  • Heras B , ScanlonMJ, MartinJL. Targeting virulence not viability in the search for future antibacterials. Br. J. Clin. Pharmacol.79 (2), 208–215 (2015).
  • Hentzer M , GivskovM. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J. Clin. Invest.112 (9), 1300–1307 (2003).
  • Kalia VC . Quorum sensing inhibitors: an overview. Biotechnol. Adv.31 (2), 224–245 (2013).
  • Tacket CO , HoneDM, CurtissRIIIet al. Comparison of the safety and immunogenicity of ΔaroC ΔaroD and Δcya Δcrp Salmonella typhi strains in adult volunteers. Infect. Immun.60 (2), 536–541 (1992).
  • Karnell A , CamPD, VermaN, LindbergAA. AroD deletion attenuates Shigella flexneri strain 2457T and makes it a safe and efficacious oral vaccine in monkeys. Vaccine11 (8), 830–836 (1993).
  • Tacket CO , HoneDM, LosonskyG, GuersL, EdelmanR, LevineMM. Clinical acceptability and immunogenicity of CVD 908 Salmonella typhi vaccine strain. Vaccine10 (7), 443–446 (1992).
  • Racz R , ChungM, XiangZ, HeY. Systematic annotation and analysis of “virmugens” – virulence factors whose mutants can be used as live attenuated vaccines. Vaccine31 (5), 797–805 (2013).
  • Malcova M , KarasovaD, RychlikI. aroA and aroD mutations influence biofilm formation in Salmonellaenteritidis. FEMS Microb. Lett.291 (1), 44–49 (2009).
  • Dilts DA , Riesenfeld-OrnI, FulginitiJPet al. Phase I clinical trials of aroA aroD and aroA aroD htrA attenuated Salmonella typhi vaccines; effect of formulation on safety and immunogenicity. Vaccine18 (15), 1473–1484 (2000).
  • Abell C . Enzymology and molecular biology of the shikimate pathway. In : Comprehensive Natural Products Chemistry Volume 1. SankawaU ( Ed.). Pergamon-Elsevier Science Ltd, Oxford, UK, 573–607 (1999).
  • Roberts F , RobertsCW, JohnsonJJet al. Evidence for the shikimate pathway in apicomplexan parasites. Nature393 (6687), 801–805 (1998).
  • Campbell SA , RichardsTA, MuiEJet al. A complete shikimate pathway in Toxoplasma gondii: an ancient eukaryotic innovation. Int. J. Parasit.34 (1), 5–13 (2004).
  • McConkey GA , PinneyJW, WestheadDRet al. Annotating the plasmodium genome and the enigma of the shikimate pathway. Trends Parasitol.20 (2), 60–65 (2004).
  • Bentley R . The shikimate pathway – a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol.25 (5), 307–384 (1990).
  • Kleanthous CK , DekaR, DavisKet al. A comparison of the enzymological and biophysical properties of two distinct classes of dehydroquinase enzymes. Biochem. J.282 (Pt 3), 687–695 (1992).
  • Chauduri C , DucanK, GrahamLD, CogginsJR. Identification of the active-site lysine residues of two biosynthetic 3-dehydroquinases. Biochem. J.275 (1), 1–6 (1991).
  • Shneier A , KleanthousC, DekaR, CogginsJR, AbellC. Observation of an imine intermediate on dehydroquinase by electrospray mass spectrometry. J. Am. Chem. Soc.113 (24), 9416–9418 (1991).
  • Price NC , BoamDJ, KellySMet al. The folding and assembly of the dodecameric type II dehydroquinases. Biochem. J.338 (1), 195–202 (1999).
  • Database for essential genes. www.essentialgene.org/.
  • Lamichhane G , FreundlichJS, EkinsS, WickramaratneN, NolanST, BishaWR. Essential metabolites of Mycobacterium tuberculosis and their mimics. MBio2 (1), e00301–e00310 (2011).
  • González-Bello C . Discovery of new antibiotics targeting the biosynthesis of aromatic amino acids: structure-based design and simulation studies. Curr. Top. Med. Chem. (2015) ( Epub ahead of print).
  • González-Bello C , CastedoL. Progress in type II dehydroquinase inhibitors: from concept to practice. Med. Res. Rev.27 (2), 177–208 (2007).
  • Le Sann C , GowerMA, AbellAD. Inhibitors of types I and II dehydroquinase. Mini-Reviews Med. Chem.4 (7), 747–756 (2004).
  • Abell C . Enzymes that exploit imines – one way or the other. Biochem. Soc. Trans.26 (3), 310–315 (1998).
  • Knowles JR . Enzyme catalysis: not different, just better. Nature350 (6314), 121–124 (1991).
  • Bugg T . An Introduction to Enzyme and Coenzyme Chemistry. Blackwell Science, Oxford, UK, 37 (1997).
  • Bugg TD H . Chemical strategies for enzyme catalysis: chemical strategies. In : Wiley Encyclopedia of Chemical Biology. Wiley, NY, USA, 774–784 (2008).
  • Eliot AC , KirschFJ. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Ann. Rev. Biochem.73, 383–415 (2004).
  • Amadasi A , BertoldiM, ContestabileRet al. Pyridoxal 5′-phosphate enzymes as targets for therapeutic agents. Curr. Med. Chem.14 (12), 1291–1324 (2007).
  • Butler JR , AlworthWL, NugentMJ. Mechanism of dehydroquinase catalyzed dehydration. 1. Formation of a Schiff-base intermediate. J. Am. Chem. Soc.96 (5), 1617–1618 (1974).
  • Gourley DG , ShriveAK, PolikarpovIet al. The two types of 3-dehydroquinase have distinct structures but catalyse the same overall reaction. Nat. Struct. Biol.6 (6), 521–525 (1999).
  • Harris J , KleanthousC, CoggingsJR, HawkinsAR, AbellC. Different mechanistic and stereochemical courses for the reactions catalysed by type I and type II dehydroquinases. J. Chem. Soc. Chem. Commun.1080–1081 (1993).
  • Krell T , HorsbourghMJ, CooperA, KellySM, CogginsJR. Localization of the active site of type II dehydroquinases. J. Biol. Chem.271 (40), 24492–24497 (1996).
  • Deka RK , KleanthousC, CogginsJR. Identification of the essential histidine residue at the active site of Escherichia coli dehydroquinase. J. Biol. Chem.267 (31), 22237–22242 (1992).
  • Nichols CE , LockyerM, HawkinsAR, StammersDK. Crystal structures of Staphylococcus aureus type I dehydroquinase from enzyme turnover experiments. Proteins56 (3), 625–628 (2004).
  • Leech AP , JamesR, CogginsJR, KleanthousC. Mutagenesis of active site residues in type I dehydroquinase from Escherichia coli. J. Biol. Chem.270 (43), 25827–25836 (1995).
  • Leech AP , BoetzelR, McDonaldCet al. Re-evaluating the role of His143 in the mechanism of type I dehydroquinase from Escherichia coli using two-dimensional 1H, 13C NMR. J. Biol. Chem.273 (16), 9602–9607 (1998).
  • Light SH , MinasovG, ShuvalovaLet al. Insights into the mechanism of type I dehydroquinate dehydratases from structures of reaction intermediates. J. Biol. Chem.286 (5), 3531–3539 (2011).
  • Pan Q , YaoY, LiZ-S. New insights into the mechanism of the Schiff base formation catalyzed by type I dehydroquinate dehydratase from S. enterica. Theor. Chem. Acc.131, 1204 (2012).
  • Yao Y , LiZS. New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: a theoretical study. Org. Biomol. Chem.10 (35), 7037–7044 (2012).
  • Yao Y , LiZS. The reaction mechanism for dehydratation process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica. Chem. Phys. Lett.519–520, 100–104 (2012).
  • Nichols CE , LockyerM, HawkinsAR, StammersDK. Crystal structures of Staphylococcus aureus type I dehydroquinase from enzyme turnover experiments. Proteins56 (3), 625–628 (2004).
  • Light SH , AntanasijevicA, KrishnaSN, CaffreyM, AndersonWF, LavieA. Crystal structures of type I dehydroquinase dehydratase in complex with quinate and shikimate suggest a novel mechanism of Schiff base formation. Biochemistry53 (5), 872–880 (2014).
  • Kleanthous C , ReillyK, CooperA, KellyS, PriceNC, CogginsJR. Stabilization of the shikimate pathway enzyme dehydroquinase by covalently bound ligand. J. Biol. Chem.266 (17), 10893–10898 (1991).
  • Reilly A , MorganP, DaviaKet al. Product-induced stabilization of tertiary and quaternary structure in Escherichia coli dehydroquinase. J. Biol. Chem.269 (8), 5523–2236 (1994).
  • Maneiro M , PeónA, LenceEet al. Insights into substrate binding and catalysis in bacterial type I dehydroquinase. Biochem. J.462 (3), 415–424 (2014).
  • Light SH , MinasovG, ShuvalovaLet al. A conserved surface loop in type I dehydroquinase dehydratases positions an active site arginine and functions in substrate binding. Biochemistry50 (12), 2357–2363 (2011).
  • Harris JM , WatkinsWJ, HawkinsAR, CogginsJR, AbellC. Comparison of the substrate specificity of type I and type II dehydroquinases with 5-deoxy- and 4,5-dideoxy-dehydroquinic acid. J. Chem. Soc. Perkin Trans. I2371–2377 (1996).
  • European Bioinformatics Institute . Clustal Omega. http://www.ebi.ac.uk/Tools/msa/clustalo/.
  • Bugg TD H , AbellC, CogginsJR. Affinity labelling of E. coli dehydroquinase. Tetrahedron Lett.29, 6783–6786 (1998).
  • Manthey MK , González-BelloC, AbellC. Synthesis of (2R)-2-bromodehydroquinic acid and (2R)-2-fluorodehydroquinic acid. J. Chem. Soc. Perkin Trans.1, 625–628 (1997).
  • González-Bello C , HarrisJM, MantheyMK, CogginsJR, AbellC. Irreversible inhibition of type I dehydroquinase by substrates for type II dehydroquinase. Bioorg. Med. Chem. Lett.10 (5), 407–409 (2000).
  • González-Bello C , MantheyMK, HarrisJH, HawkinsAR, CogginsJR, AbellC. Synthesis of 2-bromo- and 2-fluoro-3-dehydroshikimic acids and 2-bromo- and 2-fluoroshikimic acids using synthetic and enzymatic approaches. J. Org. Chem.63 (5), 1591–1597 (1998).
  • Tizón L , ManeiroM, PeónAet al. Irreversible covalent modification of type I dehydroquinase with a stable Schiff base. Org. Biomol. Chem.13 (3), 706–716 (2015).
  • Ratia K , LightSH, AntanasijevicA, AndersonWF, CaffreyM, LavieA. Discovery of selective inhibitors of the Clostridium difficile dehydroquinate dehydratase. PLoS ONE9, e89356 (2014).
  • Cheung VW N , XueB, Hernadez-ValladaresMet al. Identification of polyketide inhibitors targeting 3-dehydroquinate dehydratase in the shikimate pathway of Enterococcus faecalis. PLoS ONE9, e103598 (2014).
  • Singh J , PetterRC, BaillieTA, WhittyA. The resurgence of covalent drugs. Nat. Rev.10 (4), 307–317 (2011).
  • Johnson DS , WeerapanaE, CravattBF. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med. Chem.2 (6), 949–964 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.