420
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting Ubiquitination for Cancer Therapies

, , &
Pages 2333-2350 | Published online: 02 Dec 2015

References

  • Hershko A , CiechanoverA. The ubiquitin system. Annu. Rev. Biochem.67425–479 (1998).
  • Hershko A . Ubiquitin: roles in protein modification and breakdown. Cell34 (1), 11–12 (1983).
  • Handley PM , MuecklerM, SiegelNR, CiechanoverA, SchwartzAL. Molecular cloning, sequence, and tissue distribution of the human ubiquitin-activating enzyme E1. Proc. Natl Acad. Sci. USA88 (1), 258–262 (1991).
  • Schulman BA , HarperJW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol.10 (5), 319–331 (2009).
  • Jentsch S . The ubiquitin-conjugation system. Annu. Rev. Genet.26179–207 (1992).
  • Berndsen CE , WolbergerC. New insights into ubiquitin E3 ligase mechanism. Nat. Struct. Mol. Biol.21 (4), 301–307 (2014).
  • Nakayama KI , NakayamaK. Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer6 (5), 369–381 (2006).
  • Hershko A , CiechanoverA. The ubiquitin system for protein degradation. Annu. Rev. Biochem.61, 761–807 (1992).
  • Ciechanover A . The ubiquitin-proteasome proteolytic pathway. Cell79 (1), 13–21 (1994).
  • Rieser E , CordierSM, WalczakH. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem. Sci.38 (2), 94–102 (2013).
  • Komander D , RapeM. The ubiquitin code. Annu. Rev. Biochem.81, 203–229 (2012).
  • Chen ZJ , SunLJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell33 (3), 275–286 (2009).
  • Yang WL , ZhangX, LinHK. Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene29 (32), 4493–4503 (2010).
  • Bach I , OstendorffHP. Orchestrating nuclear functions: ubiquitin sets the rhythm. Trends Biochem. Sci.28 (4), 189–195 (2003).
  • Murray AW . Recycling the cell cycle: cyclins revisited. Cell116 (2), 221–234 (2004).
  • Glotzer M , MurrayAW, KirschnerMW. Cyclin is degraded by the ubiquitin pathway. Nature349 (6305), 132–138 (1991).
  • Hoeller D , DikicI. Targeting the ubiquitin system in cancer therapy. Nature458 (7237), 438–444 (2009).
  • Lipkowitz S , WeissmanAM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat. Rev. Cancer11 (9), 629–643 (2011).
  • Kirkin V , DikicI. Ubiquitin networks in cancer. Curr. Opin. Genet. Dev.21 (1), 21–28 (2011).
  • Pal A , YoungMA, DonatoNJ. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res.74 (18), 4955–4966 (2014).
  • Miranda M , SorkinA. Regulation of receptors and transporters by ubiquitination: new insights into surprisingly similar mechanisms. Mol. Interv.7 (3), 157–167 (2007).
  • Hicke L , SchubertHL, HillCP. Ubiquitin-binding domains. Nat. Rev. Mol. Cell Biol.6 (8), 610–621 (2005).
  • Pickart CM . Ubiquitin enters the new millennium. Mol. Cell8 (3), 499–504 (2001).
  • Sigismund S , PoloS, Di FiorePP. Signaling through monoubiquitination. Curr. Top. Microbiol. Immunol.286149–185 (2004).
  • Hicke L . Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell Biol.2 (3), 195–201 (2001).
  • Adams J , KauffmanM. Development of the proteasome inhibitor Velcade (bortezomib). Cancer Invest.22 (2), 304–311 (2004).
  • Dick LR , FlemingPE. Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discov. Today15 (5–6), 243–249 (2010).
  • Potts BC , AlbitarMX, AndersonKCet al. Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Curr. Cancer Drug Targets11 (3), 254–284 (2011).
  • Kumar SK , BerdejaJG, NiesvizkyRet al. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label Phase 1/2 study. Lancet Oncol.15 (13), 1503–1512 (2014).
  • Micel LN , TentlerJJ, SmithPG, EckhardtGS. Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J. Clin. Oncol.31 (9), 1231–1238 (2013).
  • Da Silva SR , PaivaSL, LukkarilaJL, GunningPT. Exploring a new frontier in cancer treatment: targeting the ubiquitin and ubiquitin-like activating enzymes. J. Med. Chem.56 (6), 2165–2177 (2013).
  • Popovic D , VucicD, DikicI. Ubiquitination in disease pathogenesis and treatment. Nat. Med.20 (11), 1242–1253 (2014).
  • Nawrocki ST , GriffinP, KellyKR, CarewJS. MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy. Expert Opin. Investig. Drugs21 (10), 1563–1573 (2012).
  • Swords RT , KellyKR, SmithPGet al. Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia. Blood115 (18), 3796–3800 (2010).
  • Deshaies RJ . Proteotoxic crisis, the ubiquitin–proteasome system, and cancer therapy. BMC Biol.1294 (2014).
  • Morrow JK , ZhangS. Computational prediction of protein hot spot residues. Curr. Pharm. Des.18 (9), 1255–1265 (2012).
  • Frankland-Searby S , BhaumikSR. The 26S proteasome complex: an attractive target for cancer therapy. Biochim. Biophys. Acta1825 (1), 64–76 (2012).
  • Kumar SK , RajkumarSV, DispenzieriAet al. Improved survival in multiple myeloma and the impact of novel therapies. Blood111 (5), 2516–2520 (2008).
  • Bonvini P , ZorziE, BassoG, RosolenA. Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma. Leukemia21 (4), 838–842 (2007).
  • Groll M , BerkersCR, PloeghHL, OvaaH. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure14 (3), 451–456 (2006).
  • Hideshima T , RichardsonPG, AndersonKC. Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol. Cancer Ther.10 (11), 2034–2042 (2011).
  • Gelman JS , SironiJ, BerezniukIet al. Alterations of the intracellular peptidome in response to the proteasome inhibitor bortezomib. PLoS ONE8 (1), e53263 (2013).
  • Mattern MR , WuJ, NicholsonB. Ubiquitin-based anticancer therapy: carpet bombing with proteasome inhibitors vs surgical strikes with E1, E2, E3, or DUB inhibitors. Biochim. Biophys. Acta1823 (11), 2014–2021 (2012).
  • Kubiczkova L , PourL, SedlarikovaL, HajekR, SevcikovaS. Proteasome inhibitors – molecular basis and current perspectives in multiple myeloma. J. Cell. Mol. Med.18 (6), 947–961 (2014).
  • Richardson PG , BriembergH, JagannathSet al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J. Clin. Oncol.24 (19), 3113–3120 (2006).
  • Richardson PG , BarlogieB, BerensonJet al. A Phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med.348 (26), 2609–2617 (2003).
  • Suzuki E , DemoS, DeuEet al. Molecular mechanisms of bortezomib resistant adenocarcinoma cells. PLoS ONE6 (12), e27996 (2011).
  • Vij R , SiegelDS, JagannathSet al. An open-label, single-arm, Phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib. Br. J. Haematol.158 (6), 739–748 (2012).
  • Vij R , WangM, KaufmanJLet al. An open-label, single-arm, Phase 2 (PX-171–004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma. Blood119 (24), 5661–5670 (2012).
  • Meng L , MohanR, KwokBH, ElofssonM, SinN, CrewsCM. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl Acad. Sci. USA96 (18), 10403–10408 (1999).
  • Piva R , RuggeriB, WilliamsMet al. CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood111 (5), 2765–2775 (2008).
  • Tsukamoto S , TakeuchiT, RotinsuluHet al. Leucettamol A: a new inhibitor of Ubc13-Uev1A interaction isolated from a marine sponge, Leucetta aff. microrhaphis. Bioorg. Med. Chem. Lett.18 (24), 6319–6320 (2008).
  • Dalisay DS , TsukamotoS, MolinskiTF. Absolute configuration of the alpha,omega-bifunctionalized sphingolipid leucettamol A from Leucetta microrhaphis by deconvoluted exciton coupled CD. J. Nat. Prod.72 (3), 353–359 (2009).
  • Ceccarelli DF , TangX, PelletierBet al. An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell145 (7), 1075–1087 (2011).
  • Ito T , AndoH, SuzukiTet al. Identification of a primary target of thalidomide teratogenicity. Science327 (5971), 1345–1350 (2010).
  • Kim Y , Schmidt-WolfIG. Lenalidomide in multiple myeloma. Expert Rev. Anticancer Ther.15 (5), 491–497 (2015).
  • Lacy MQ , RajkumarSV. Pomalidomide: a new IMiD with remarkable activity in both multiple myeloma and myelofibrosis. Am. J. Hematol.85 (2), 95–96 (2010).
  • Vassilev LT , VuBT, GravesBet al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science303 (5659), 844–848 (2004).
  • Vassilev LT . MDM2 inhibitors for cancer therapy. Trends Mol. Med.13 (1), 23–31 (2007).
  • Vu B , WovkulichP, PizzolatoGet al. Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med. Chem. Lett.4 (5), 466–469 (2013).
  • Gembarska A , LucianiF, FedeleCet al. MDM4 is a key therapeutic target in cutaneous melanoma. Nat. Med.18 (8), 1239–1247 (2012).
  • Chang YS , GravesB, GuerlavaisVet al. Stapled alpha-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl Acad. Sci. USA110 (36), E3445–E3454 (2013).
  • Wang H , MaX, RenS, BuolamwiniJK, YanC. A small-molecule inhibitor of MDMX activates p53 and induces apoptosis. Mol. Cancer Ther.10 (1), 69–79 (2011).
  • Ungermannova D , LeeJ, ZhangG, DallmannHG, MchenryCS, LiuX. High-throughput screening AlphaScreen assay for identification of small-molecule inhibitors of ubiquitin E3 ligase SCFSkp2-Cks1. J. Biomol. Screen.18 (8), 910–920 (2013).
  • Orlicky S , TangX, NeduvaVet al. An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase. Nat. Biotechnol.28 (7), 733–737 (2010).
  • Wu L , GrigoryanAV, LiY, HaoB, PaganoM, CardozoTJ. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem. Biol.19 (12), 1515–1524 (2012).
  • Chen Q , XieW, KuhnDJet al. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood111 (9), 4690–4699 (2008).
  • Chan CH , MorrowJK, LiCFet al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell154 (3), 556–568 (2013).
  • Nakajima H , FujiwaraH, FuruichiY, TanakaK, ShimbaraN. A novel small-molecule inhibitor of NF-kappaB signaling. Biochem. Biophys. Res. Commun.368 (4), 1007–1013 (2008).
  • Blees JS , BokeschHR, RubsamenDet al. Erioflorin stabilizes the tumor suppressor Pdcd4 by inhibiting its interaction with the E3-ligase beta-TrCP1. PLoS ONE7 (10), e46567 (2012).
  • Khoury K , DomlingA. P53 mdm2 inhibitors. Curr. Pharm. Des.18 (30), 4668–4678 (2012).
  • Tabernero J , DirixL, SchoffskiPet al. A Phase I first-in-human pharmacokinetic and pharmacodynamic study of serdemetan in patients with advanced solid tumors. Clin. Cancer Res.17 (19), 6313–6321 (2011).
  • Kapuria V , PetersonLF, FangD, BornmannWG, TalpazM, DonatoNJ. Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res.70 (22), 9265–9276 (2010).
  • Lee BH , LeeMJ, ParkSet al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature467 (7312), 179–184 (2010).
  • Aleo E , HendersonCJ, FontaniniA, SolazzoB, BrancoliniC. Identification of new compounds that trigger apoptosome-independent caspase activation and apoptosis. Cancer Res.66 (18), 9235–9244 (2006).
  • Altun M , KramerHB, WillemsLIet al. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem. Biol.18 (11), 1401–1412 (2011).
  • Chauhan D , CatleyL, LiGet al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell8 (5), 407–419 (2005).
  • Millward M , PriceT, TownsendAet al. Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination. Invest. New Drugs30 (6), 2303–2317 (2012).
  • Kupperman E , LeeEC, CaoYet al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res.70 (5), 1970–1980 (2010).
  • Ushiyama S , UmaokaH, KatoHet al. Manadosterols A and B, sulfonated sterol dimers inhibiting the Ubc13–Uev1A interaction, isolated from the marine sponge Lissodendryx fibrosa. J. Nat. Prod.75 (8), 1495–1499 (2012).
  • Metzger MB , HristovaVA, WeissmanAM. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci.125 (3), 531–537 (2012).
  • Nijman SM , Luna-VargasMP, VeldsAet al. A genomic and functional inventory of deubiquitinating enzymes. Cell123 (5), 773–786 (2005).
  • Skaar JR , PaganJK, PaganoM. Mechanisms and function of substrate recruitment by F-box proteins. Nat. Rev. Mol. Cell Biol.14 (6), 369–381 (2013).
  • Lu G , MiddletonRE, SunHet al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science343 (6168), 305–309 (2014).
  • Fischer ES , BohmK, LydeardJRet al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature512 (7512), 49–53 (2014).
  • Lopez-Girona A , MendyD, ItoTet al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia26 (11), 2326–2335 (2012).
  • Zhu YX , BraggioE, ShiCXet al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood118 (18), 4771–4779 (2011).
  • Lee JT , GuW. The multiple levels of regulation by p53 ubiquitination. Cell Death Differ.17 (1), 86–92 (2010).
  • Haupt Y , MayaR, KazazA, OrenM. Mdm2 promotes the rapid degradation of p53. Nature387 (6630), 296–299 (1997).
  • Honda R , TanakaH, YasudaH. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett.420 (1), 25–27 (1997).
  • Fang S , JensenJP, LudwigRL, VousdenKH, WeissmanAM. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem.275 (12), 8945–8951 (2000).
  • Chargari C , LeteurC, AngevinEet al. Preclinical assessment of JNJ-26854165 (Serdemetan), a novel tryptamine compound with radiosensitizing activity in vitro and in tumor xenografts. Cancer Lett.312 (2), 209–218 (2011).
  • Van Maerken T , RihaniA, Van GoethemA, De PaepeA, SpelemanF, VandesompeleJ. Pharmacologic activation of wild-type p53 by nutlin therapy in childhood cancer. Cancer Lett.344 (2), 157–165 (2014).
  • Joseph TL , MadhumalarA, BrownCJ, LaneDP, VermaCS. Differential binding of p53 and nutlin to MDM2 and MDMX: computational studies. Cell Cycle9 (6), 1167–1181 (2010).
  • Deshaies RJ , JoazeiroCA. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem.78399–434 (2009).
  • Petroski MD , DeshaiesRJ. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol.6 (1), 9–20 (2005).
  • Aghajan M , JonaiN, FlickKet al. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nat. Biotechnol.28 (7), 738–742 (2010).
  • Chen BB , CoonTA, GlasserJRet al. A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation. Nat. Immunol.14 (5), 470–479 (2013).
  • Frescas D , PaganoM. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat. Rev. Cancer8 (6), 438–449 (2008).
  • Bielskiene K , BagdonieneL, MozuraitieneJ, KazbarieneB, JanulionisE. E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma. Medicina (Kaunas)51 (1), 1–9 (2015).
  • Skaar JR , PaganJK, PaganoM. SCF ubiquitin ligase-targeted therapies. Nat. Rev. Drug Discov.13 (12), 889–903 (2014).
  • Ub Pharma overview. http://www.onenucleus.com/media/Events/ONC%20Seminar/Oncology%20seminar%20UB%20Pharma%20111011.pdf
  • Nakayama K , NagahamaH, MinamishimaYAet al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev. Cell6 (5), 661–672 (2004).
  • Chan CH , LiCF, YangWLet al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell149 (5), 1098–1111 (2012).
  • Hershko DD . Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer112 (7), 1415–1424 (2008).
  • Lin HK , WangG, ChenZet al. Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat. Cell Biol.11 (4), 420–432 (2009).
  • Chan CH , LeeSW, LiCFet al. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat. Cell Biol.12 (5), 457–467 (2010).
  • Lee SW , LiCF, JinGet al. Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress. Mol. Cell57 (6), 1022–1033 (2015).
  • Zheng N , SchulmanBA, SongLet al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature416 (6882), 703–709 (2002).
  • Hao B , ZhengN, SchulmanBAet al. Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol. Cell20 (1), 9–19 (2005).
  • Sakai T , SakaueH, NakamuraTet al. Skp2 controls adipocyte proliferation during the development of obesity. J. Biol. Chem.282 (3), 2038–2046 (2007).
  • Chan CH , MorrowJK, ZhangS, LinHK. Skp2: a dream target in the coming age of cancer therapy. Cell Cycle13 (5), 679–680 (2014).
  • Ganoth D , BornsteinG, KoTKet al. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat. Cell Biol.3 (3), 321–324 (2001).
  • Montagnoli A , FioreF, EytanEet al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev.13 (9), 1181–1189 (1999).
  • Tsvetkov LM , YehKH, LeeSJ, SunH, ZhangH. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr. Biol.9 (12), 661–664 (1999).
  • Komander D , ClagueMJ, UrbeS. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol.10 (8), 550–563 (2009).
  • Yang Y , KitagakiJ, WangH, HouDX, PerantoniAO. Targeting the ubiquitin–proteasome system for cancer therapy. Cancer Sci.100 (1), 24–28 (2009).
  • Daviet L , CollandF. Targeting ubiquitin specific proteases for drug discovery. Biochimie90 (2), 270–283 (2008).
  • D’arcy P , WangX, LinderS. Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol. Ther.147C, 32–54 (2015).
  • Shinji S , NaitoZ, IshiwataSet al. Ubiquitin-specific protease 14 expression in colorectal cancer is associated with liver and lymph node metastases. Oncol. Rep.15 (3), 539–543 (2006).
  • Wu N , LiuC, BaiC, HanYP, ChoWC, LiQ. Over-Expression of deubiquitinating enzyme USP14 in lung adenocarcinoma promotes proliferation through the accumulation of beta-catenin. Int. J. Mol. Sci.14 (6), 10749–10760 (2013).
  • Peterson LF , SunH, LiuYet al. Targeting deubiquitinase activity with a novel small-molecule inhibitor as therapy for B-cell malignancies. Blood125 (23), 3588–3597 (2015).
  • Bartholomeusz GA , TalpazM, KapuriaVet al. Activation of a novel Bcr/Abl destruction pathway by WP1130 induces apoptosis of chronic myelogenous leukemia cells. Blood109 (8), 3470–3478 (2007).
  • Bartholomeusz G , TalpazM, BornmannW, KongLY, DonatoNJ. Degrasyn activates proteasomal-dependent degradation of c-Myc. Cancer Res.67 (8), 3912–3918 (2007).
  • Seiberlich V , BorchertJ, ZhukarevaV, Richter-LandsbergC. Inhibition of protein deubiquitination by PR-619 activates the autophagic pathway in OLN-t40 oligodendroglial cells. Cell Biochem. Biophys.67 (1), 149–160 (2013).
  • Seiberlich V , GoldbaumO, ZhukarevaV, Richter-LandsbergC. The small molecule inhibitor PR-619 of deubiquitinating enzymes affects the microtubule network and causes protein aggregate formation in neural cells: implications for neurodegenerative diseases. Biochim. Biophys. Acta1823 (11), 2057–2068 (2012).
  • Eichhorn PJ , RodonL, Gonzalez-JuncaAet al. USP15 stabilizes TGF-beta receptor I and promotes oncogenesis through the activation of TGF-beta signaling in glioblastoma. Nat. Med.18 (3), 429–435 (2012).
  • Inui M , ManfrinA, MamidiAet al. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat. Cell Biol.13 (11), 1368–1375 (2011).
  • Zou Q , JinJ, HuHet al. USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses. Nat. Immunol.15 (6), 562–570 (2014).
  • Ernst A , AvvakumovG, TongJet al. A strategy for modulation of enzymes in the ubiquitin system. Science339 (6119), 590–595 (2013).
  • Nalepa G , RolfeM, HarperJW. Drug discovery in the ubiquitin–proteasome system. Nat. Rev. Drug Discov.5 (7), 596–613 (2006).
  • Welcker M , ClurmanBE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer8 (2), 83–93 (2008).
  • Yen HC , ElledgeSJ. Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science322 (5903), 923–929 (2008).
  • Yen HC , XuQ, ChouDM, ZhaoZ, ElledgeSJ. Global protein stability profiling in mammalian cells. Science322 (5903), 918–923 (2008).
  • Maspero E , ValentiniE, MariSet al. Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nat. Struct. Mol. Biol.20 (6), 696–701 (2013).
  • Huang Z , ChoiBK, MujooKet al. The E3 ubiquitin ligase NEDD4 negatively regulates HER3/ErbB3 level and signaling. Oncogene34 (9), 1105–1115 (2014).
  • Zeng F , XuJ, HarrisRC. Nedd4 mediates ErbB4 JM-a/CYT-1 ICD ubiquitination and degradation in MDCK II cells. FASEB J.23 (6), 1935–1945 (2009).
  • Persaud A , AlbertsP, HayesMet al. Nedd4–1 binds and ubiquitylates activated FGFR1 to control its endocytosis and function. EMBO J.30 (16), 3259–3273 (2011).
  • Rotin D , KumarS. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol.10 (6), 398–409 (2009).
  • Maspero E , MariS, ValentiniEet al. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep.12 (4), 342–349 (2011).
  • Bouyain S , LeahyDJ. Structure-based mutagenesis of the substrate-recognition domain of Nrdp1/FLRF identifies the binding site for the receptor tyrosine kinase ErbB3. Protein Sci.16 (4), 654–661 (2007).
  • Liu Q , ZhouH, LangdonWY, ZhangJ. E3 ubiquitin ligase Cbl-b in innate and adaptive immunity. Cell Cycle13 (12), 1875–1884 (2014).
  • Lutz-Nicoladoni C , WolfD, SopperS. Modulation of Immune Cell Functions by the E3 Ligase Cbl-b. Front. Oncol.5, 58 (2015).
  • Loeser S , PenningerJM. The ubiquitin E3 ligase Cbl-b in T cells tolerance and tumor immunity. Cell Cycle6 (20), 2478–2485 (2007).
  • Udeshi ND , SvinkinaT, MertinsPet al. Refined preparation and use of anti-diglycine remnant (K-epsilon-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol. Cell. Proteomics12 (3), 825–831 (2013).
  • Nguyen VN , HuangKY, HuangCHet al. Characterization and identification of ubiquitin conjugation sites with E3 ligase recognition specificities. BMC Bioinform.16 (Suppl. 1), S1 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.