57
Views
0
CrossRef citations to date
0
Altmetric
Commentary

Peptide Triazole Inactivators of HIV-1: How Do They Work and What is Their Potential?

&
Pages 2305-2310 | Published online: 24 Nov 2015

References

  • Acharya P , LusvarghiS, BewleyCA, KwongPD. HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opin. Ther. Targets19 (6), 765–783 (2015).
  • Swindells S , FlexnerC, FletcherCV, JacobsonJM. The critical need for alternative antiretroviral formulations, and obstacles to their development. J. Infect. Dis.204 (5), 669–674 (2011).
  • Wyatt R , KwongPD, DesjardinsEet al. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature393 (6686), 705–711 (1998).
  • Jiao J , RebaneAA, MaL, GaoY, ZhangY. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition. Proc. Natl Acad. Sci. USA112 (22), E2855–E2864 (2015).
  • Doms RW . Beyond receptor expression: the influence of receptor conformation, density, and affinity in HIV-1 infection. Virology276 (2), 229–237 (2000).
  • Do Kwon Y , PanceraM, AcharyaPet al. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nat. Struct. Mol. Biol.22 (7), 522–531 (2015).
  • Julien JP , CupoA, SokDet al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science342 (6165), 1477–1483 (2013).
  • Munro JB , GormanJ, MaXet al. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science346 (6210), 759–763 (2014).
  • Bastian AR , ContarinoM, BaileyLDet al. Interactions of peptide triazole thiols with Env gp120 induce irreversible breakdown and inactivation of HIV-1 virions. Retrovirology10, 153 (2013).
  • Bastian AR , Kantharaju, McFaddenKet al. Cell-Free HIV-1 virucidal action by modified peptide triazole inhibitors of Env gp120. ChemMedChem6 (8), 1335–1339 (2011).
  • Contarino M , BastianAR, Kalyana SundaramRVet al. Chimeric cyanovirin-MPER recombinantly engineered proteins cause cell-free virolysis of HIV-1. Antimicrob. Agents Chemother.57 (10), 4743–4750 (2013).
  • Bastian AR , NangarliaA, BaileyLDet al. Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation. J. Biol. Chem.290 (1), 529–543 (2015).
  • Biorn AC , CocklinS, MadaniNet al. Mode of action for linear peptide inhibitors of HIV-1 gp120 interactions. Biochemistry43 (7), 1928–1938 (2004).
  • Ferrer M , HarrisonSC. Peptide ligands to human immunodeficiency virus type 1 gp120 identified from phage display libraries. J. Virol.73 (7), 5795–5802 (1999).
  • Gopi HN , TirupulaKC, BaxterS, AjithS, ChaikenIM. Click chemistry on azidoproline: high-affinity dual antagonist for HIV-1 envelope glycoprotein gp120. ChemMedChem1 (1), 54–57 (2006).
  • Rostovtsev VV , GreenLG, FokinVV, SharplessKB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl.41 (14), 2596–2599 (2002).
  • Gopi H , CocklinS, PirroneVet al. Introducing metallocene into a triazole peptide conjugate reduces its off-rate and enhances its affinity and antiviral potency for HIV-1 gp120. J. Mol. Recognit.22 (2), 169–174 (2009).
  • Gopi H , UmashankaraM, PirroneVet al. Structural determinants for affinity enhancement of a dual antagonist peptide entry inhibitor of human immunodeficiency virus type-1. J. Med. Chem.51 (9), 2638–2647 (2008).
  • Cocklin S , GopiH, BaxterS, ChaikenI. A dual action peptide GP120 inhibitor that is effective against multiple HIV-1 clades. FASEB J.20 (4), A465–A465 (2006).
  • McFadden K , FletcherP, RossiFet al. Antiviral breadth and combination potential of peptide triazole HIV-1 entry inhibitors. Antimicrob. Agents Chemother.56 (2), 1073–1080 (2012).
  • Umashankara M , McFaddenK, ZentnerIet al. The active core in a triazole peptide dual-site antagonist of HIV-1 gp120. ChemMedChem5 (11), 1871–1879 (2010).
  • Bailey LB , Kalyana SundramRV, LiHet al. Disulfide sensitivity in the Env protein underlies lytic inactivation of HIV-1 by peptide triazole thiols. ACS Chem. Biol. doi:10.1021/acschembio.5b00381 (2015).
  • Emileh A , TuzerF, YehHet al. A model of peptide triazole entry inhibitor binding to HIV-1 gp120 and the mechanism of bridging sheet disruption. Biochemistry52 (13), 2245–2261 (2013).
  • Aneja R , RashadAA, LiHet al. Peptide triazole inactivators of HIV-1 utilize a conserved two-cavity binding site at the junction of the inner and outer domains of Env gp120. J. Med. Chem.58 (9), 3843–3858 (2015).
  • Rashad AA , Kalyana SundaramRV, AnejaR, DuffyC, ChaikenI. Macrocyclic envelope glycoprotein antagonists that irreversibly inactivate HIV-1 before host cell encounter. J. Med. Chem.58 (18), 7603–7608 (2015).
  • Rashad AA , Kalyana SundaramRV, NangarliaA, AnejaR, DuffyC, ChaikenI. Macrocyclic HIV-1 envelope glycoprotein antagonists. Presented at : Structural Biology Related to HIV/AIDS. Natcher Conference Center, Bethesda, Maryland, USA, 18–19 June 2015.
  • Bastian AR . Irreversible breakdown of HIV-1 by peptide triazole thiols and multivalent gold nanoparticle conjugates [PhD thesis]. Ann Arbor, Drexel University, MI, USA (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.