619
Views
0
CrossRef citations to date
0
Altmetric
Review

In Silico Prediction of hERG Inhibition

, , , &
Pages 571-586 | Published online: 29 Apr 2015

References

  • Tristani-Firouzi M , ChenJ, MitchesonJS, SanguinettiMC. Molecular biology of K+ channels and their role in cardiac arrhythmias. Am. J. Med.110 (1), 50–59 (2001).
  • Shah RR . Can pharmacogenetics help rescue drugs withdrawn from the market?Pharmacogenomics7 (6), 889–908 (2006).
  • International Conference on Harmonisation ; guidance on S7A safety pharmacology studies for human pharmaceuticals; availability. Notice. Fed. Regist.66 (135), 36791–36792 (2001).
  • International Conference on Harmonisation ; guidance on S7B nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals; availability. Notice. Fed Regist70 (202), 61133–61134 (2005).
  • International Conference on Harmonisation ; guidance on E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs; availability. Notice. Fed Regist70 (202), 61134–61135 (2005).
  • Bridgland-Taylor MH , HargreavesAC, EasterAet al. Optimization and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks HT. J. Pharmacol. Toxicol. Methods54 (2), 189–199 (2006).
  • Mathes C , FriisS, FinleyM, LiuY. QPatch: the missing link between HTS and ion channel drug discovery. Comb. Chem. High Throughput Screen.12 (1), 78–95 (2009).
  • Chiu PJS , MarcoeKF, BoundsSEet al. Validation of a [3H]astemizole binding assay in HEK293 cells expressing HERG K+ channels. J. Pharmacol. Sci. (Tokyo)95 (3), 311–319 (2004).
  • Chaudhary KW , O'NealJM, MoZL, FerminiB, GallavanRH, BahinskiA. Evaluation of the rubidium efflux assay for preclinical identification of hERG blockade. Assay Drug Dev. Technol.4 (1), 73–82 (2006).
  • Redfern WS , CarlssonL, DavisASet al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res.58 (1), 32–45 (2003).
  • Milan DJ , PetersonTA, RuskinJN, PetersonRT, MacRaeCA. Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation107 (10), 1355–1358 (2003).
  • Aronov AM . Predictive in silico modeling for hERG channel blockers. Drug Discov. Today10 (2), 149–155 (2005).
  • Braga RC , AlvesVM, SilvaMFBet al. Tuning hERG out: antitarget QSAR models for drug development. Curr. Top. Med. Chem.14 (11), 1399–1415 (2014).
  • Wang S , LiY, XuL, LiD, HouT. Recent developments in computational prediction of hERG blockage. Curr. Top. Med. Chem.13 (11), 1317–1326 (2013).
  • Taboureau O , JorgensenFS. In silico predictions of hERG channel blockers in drug discovery: from ligand-based and target-based approaches to systems chemical biology. Comb. Chem. High Throughput Screen.14 (5), 375–387 (2011).
  • Recanatini M , CavalliA. QSAR and pharmacophores for drugs involved in hERG blockage. Methods Princ. Med. Chem.38, 109–126 (2008).
  • Verma J , KhedkarVM, CoutinhoEC. 3D-QSAR in drug design - a review. Curr. Top. Med. Chem.10 (1), 95–115 (2010).
  • Durdagi S , SubbotinaJ, Lees-MillerJ, GuoJ, DuffHJ, NoskovSY. Insights into the molecular mechanism of hERG1 channel activation and blockade by drugs. Curr. Med. Chem.17 (30), 3514–3532 (2010).
  • Keserü GM . Prediction of hERG potassium channel affinity by traditional and hologram qSAR methods. Bioorg. Med. Chem. Lett.13 (16), 2773–2775 (2003).
  • Coi A , MassarelliI, MurgiaL, SaracenoM, CalderoneV, BianucciAM. Prediction of hERG potassium channel affinity by the CODESSA approach. Bioorg. Med. Chem.14 (9), 3153–3159 (2006).
  • Song M , ClarkM. Development and Evaluation of an in silico model for hERG binding. J. Chem. Inf. Model.46 (1), 392–400 (2005).
  • Yoshida K , NiwaT. Quantitative structure-activity relationship studies on inhibition of HERG potassium channels. J. Chem. Inf. Model.46 (3), 1371–1378 (2006).
  • Kramer C , BeckB, KrieglJ, ClarkT. A composite model for hERG blockade. ChemMedChem3 (2), 254–265 (2008).
  • Garg D , GandhiT, Gopi MohanC. Exploring QSTR and toxicophore of hERG K+ channel blockers using GFA and HypoGen techniques. J. Mol. Graphics Model.26 (6), 966–976 (2008).
  • Hansen K , RathkeF, SchroeterTet al. Bias-correction of regression models: a case study on hERG inhibition. J. Chem. Inf. Model.49 (6), 1486–1496 (2009).
  • Sinha N , SenS. Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model. Eur. J. Med. Chem.46 (2), 618–630 (2011).
  • Moorthy NSH , RamosMJ, FernandesPA. Predictive QSAR models development and validation for human ether-a-go-go related gene (hERG) blockers using newer tools. J. Enzyme Inhib. Med. Chem.29 (3), 317–324 (2014).
  • Aptula AO , CroninMTD. Prediction of hERG K+ blocking potency: application of structural knowledge. SAR QSAR Environ. Res.15 (5–6), 399–411 (2004).
  • Schultz TW , CroninMTD. Essential and desirable characteristics of ecotoxicity quantitative structure-activity relationships. Environ. Toxicol. Chem.22 (3), 599–607 (2003).
  • Katritzky AR , IgnatchenkoES, BarcockRA, LobanovVS, KarelsonM. Prediction of gas chromatographic retention times and response factors using a general qualitative structure-property relationships treatment. Anal. Chem.66 (11), 1799–1807 (1994).
  • Vapnik V , ChapelleO. Bounds on error expectation for support vector machines. Neural Comput.12 (9), 2013–2036 (2000).
  • Svetnik V , LiawA, TongC, CulbersonJC, SheridanRP, FeustonBP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci.43 (6), 1947–1958 (2003).
  • Pitzer EW . A review of four molecular structure indexing methods. Prepr. Am. Chem. Soc. Div. Pet. Chem.32 (2), 534–539 (1987).
  • Wermuth CG , GanellinCR, LindbergP, MitscherLA. Glossary of terms used in medicinal chemistry (IUPAC recommendations 1998). Pure Appl. Chem.70 (5), 1129–1143 (1998).
  • Ekins S , CrumbWJ, SarazanRD, WikelJH, WrightonSA. Three-dimensional quantitative structure-activity relationship for inhibition of human ether-a-go-go-related gene potassium channel. J. Pharmacol. Exp. Ther.301 (2), 427–434 (2002).
  • Morgan TK Jr , SullivanME. An overview of class III electrophysiological agents: a new generation of antiarrhythmic therapy. Prog. Med. Chem.29, 65–108 (1992).
  • Matyus P , BorosyAP, VarroA, PappJG, BarloccoD, CignarellaG. Development of pharmacophores for inhibitors of the rapid component of the cardiac delayed rectifier potassium current. Int. J. Quantum Chem.69 (1), 21–30 (1998).
  • Aronov AM , GoldmanBB. A model for identifying HERG K+ channel blockers. Bioorg. Med. Chem.12 (9), 2307–2315 (2004).
  • Aronov AM . Common pharmacophores for uncharged human ether-a-go-go-related gene (hERG) blockers. J. Med. Chem.49 (23), 6917–6921 (2006).
  • Aronov AM . Tuning out of hERG. Curr. Opin. Drug Discov. Dev.11 (1), 128–140 (2008).
  • Peukert S , BrendelJ, PirardBet al. Pharmacophore-based search, synthesis, and biological evaluation of anthranilic amides as novel blockers of the Kv1.5 channel. Bioorg. Med. Chem. Lett.14 (11), 2823–2827 (2004).
  • Durdagi S , DuffHJ, NoskovSY. Combined receptor and ligand-based approach to the universal pharmacophore model development for studies of drug blockade to the hERG1 pore domain. J. Chem. Inf. Model.51 (2), 463–474 (2011).
  • Tan Y , ChenY, YouQ, SunH, LiM. Predicting the potency of hERG K+ channel inhibition by combining 3D-QSAR pharmacophore and 2D-QSAR models. J. Mol. Model.18 (3), 1023–1036 (2012).
  • Du-Cuny L , ChenL, ZhangS. A critical assessment of combined ligand- and structure-based approaches to hERG channel blocker modeling. J. Chem. Inf. Model.51 (11), 2948–2960 (2011).
  • Kratz JM , SchusterD, EdtbauerMet al. Experimentally validated hERG pharmacophore models as cardiotoxicity prediction tools. J. Chem. Inf. Model.54 (10), 2887–2901 (2014).
  • Wolber G , LangerT. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Comput. Sci.45 (1), 160–169 (2005).
  • Strobl GR , von KruedenerS, StoeckigtJ, GuengerichFP, WolffT. Development of a pharmacophore for inhibition of human liver cytochrome P-450 2D6: molecular modeling and inhibition studies. J. Med. Chem.36 (9), 1136–1145 (1993).
  • Ramesh M , BharatamPV. CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis. J. Mol. Model.18 (2), 709–720 (2012).
  • Güner OF , BowenJP. Pharmacophore modeling for ADME. Curr. Top. Med. Chem.13 (11), 1327–1342 (2013).
  • Cavalli A , PoluzziE, De PontiF, RecanatiniM. Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K+ channel blockers. J. Med. Chem.45 (18), 3844–3853 (2002).
  • Pearlstein RA , VazRJ, KangJet al. Characterization of HERG potassium channel inhibition using CoMSiA 3D QSAR and homology modeling approaches. Bioorg. Med. Chem. Lett.13 (10), 1829–1835 (2003).
  • Carosati E , LemoineH, SpogliRet al. Binding studies and GRIND/ALMOND-based 3D QSAR analysis of benzothiazine type KATP-channel openers. Bioorg. Med. Chem.13 (19), 5581–5591 (2005).
  • Ermondi G , VisentinS, CaronG. GRIND-based 3D-QSAR and CoMFA to investigate topics dominated by hydrophobic interactions: the case of hERG K+ channel blockers. Eur. J. Med. Chem.44 (5), 1926–1932 (2009).
  • Du LP , TsaiKC, LiMY, YouQd, XiaL. The pharmacophore hypotheses of IKr potassium channel blockers: novel class III antiarrhythmic agents. Bioorg. Med. Chem. Lett.14 (18), 4771–4777 (2004).
  • Cianchetta G , LiY, KangJet al. Predictive models for hERG potassium channel blockers. Bioorg. Med. Chem. Lett.15 (15), 3637–3642 (2005).
  • Roche O , TrubeG, ZueggeJ, PflimlinP, AlanineA, SchneiderG. A virtual screening method for prediction of the hERG potassium channel liability of compound libraries. ChemBioChem3 (5), 455–459 (2002).
  • Hidaka S , YamasakiH, OhmayuYet al. Nonlinear classification of hERG channel inhibitory activity by unsupervised classification method. J. Toxicol. Sci.35 (3), 393–399 (2010).
  • Vracko M . Kohonen artificial neural network and counter propagation neural network in molecular structure-toxicity studies. Curr. Comput. Aided Drug Des.1 (1), 73–78 (2005).
  • Roche O , TrubeG, ZueggeJ, PflimlinP, AlanineA, SchneiderG. A virtual screening method for prediction of the hERG potassium channel liability of compound libraries. ChemBioChem3 (5), 455–459 (2002).
  • Bains W , BasmanA, WhiteC. HERG binding specificity and binding site structure: evidence from a fragment-based evolutionary computing SAR study. Prog. Biophys. Mol. Biol.86 (2), 205–233 (2004).
  • Tobita M , NishikawaT, NagashimaR. A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors. Bioorg. Med. Chem. Lett.15 (11), 2886–2890 (2005).
  • Dubus E , IjjaaliI, PetitetF, MichelA. In silico classification of herg channel blockers: a knowledge-based strategy. ChemMedChem1 (6), 622–630 (2006).
  • Sun H . An accurate and interpretable bayesian classification model for prediction of hERG liability. ChemMedChem1 (3), 315–322 (2006).
  • Ekins S , BalakinKV, SavchukN, IvanenkovY. Insights for human ether-a-go-go-related gene potassium channel inhibition using recursive partitioning and kohonen and sammon mapping techniques. J. Med. Chem.49 (17), 5059–5071 (2006).
  • Gepp MM , HutterMC. Determination of hERG channel blockers using a decision tree. Bioorg. Med. Chem.14 (15), 5325–5332 (2006).
  • Wang M , YangXG, XueY. Identifying hERG potassium channel inhibitors by machine learning methods. QSAR Comb. Sci.27 (8), 1028–1035 (2008).
  • Thai KM , EckerGF. A binary QSAR model for classification of hERG potassium channel blockers. Bioorg. Med. Chem.16 (7), 4107–4119 (2008).
  • Jia L , SunH. Support vector machines classification of hERG liabilities based on atom types. Bioorg. Med. Chem.16 (11), 6252–6260 (2008).
  • Li Q , JorgensenFS, OpreaT, BrunakS, TaboureauO. hERG classification model based on a combination of support vector machine method and GRIND descriptors. Mol. Pharmaceutics5 (1), 117–127 (2008).
  • Chekmarev DS , KholodovychV, BalakinKV, IvanenkovY, EkinsS, WelshWJ. Shape signatures: new descriptors for predicting cardiotoxicity in silico. Chem. Res. Toxicol.21 (6), 1304–1314 (2008).
  • Filz O , LaguninA, FilimonovD, PoroikovV. Computer-aided prediction of QT-prolongation. SAR QSAR Environ. Res.19 (1–2), 81–90 (2008).
  • Thai KM , EckerGF. Similarity-based SIBAR descriptors for classification of chemically diverse hERG blockers. Mol. Diversity13 (3), 321–336 (2009).
  • Nisius B , GöllerAH. Similarity-based classifier using topomers to provide a knowledge base for hERG channel inhibition. J. Chem. Inf. Model.49 (2), 247–256 (2009).
  • Su BH , ShenMy, EspositoEX, HopfingerAJ, TsengYJ. In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage. J. Chem. Inf. Model.50 (7), 1304–1318 (2010).
  • Doddareddy MR , KlaasseEC, Shagufta, IJzermanAP, BenderA. Prospective validation of a comprehensive in silico herg model and its applications to commercial compound and drug databases. ChemMedChem5 (5), 716–729 (2010).
  • Wang S , LiY, WangJet al. ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of herg potassium channel blockage. Mol. Pharmaceutics9 (4), 996–1010 (2012).
  • Broccatelli F , MannholdR, MoriconiA, GiuliS, CarosatiE. QSAR modeling and data mining link torsades de pointes risk to the interplay of extent of metabolism, active transport, and hERG liability. Mol. Pharmaceutics9 (8), 2290–2301 (2012).
  • Su BH , TuYs, EspositoEX, TsengYJ. Predictive toxicology modeling: protocols for exploring hERG classification and tetrahymena pyriformis end point predictions. J. Chem. Inf. Model.52 (6), 1660–1673 (2012).
  • Czodrowski P . hERG me out. J. Chem. Inf. Model.53 (9), 2240–2251 (2013).
  • Labute P . A widely applicable set of descriptors. J. Mol. Graphics Model.18 (4/5), 464–477 (2000).
  • Cherkasov A . ‘Inductive’ descriptors: 10 successful years in QSAR. Curr. Comput. Aided Drug Des.1 (1), 21–42 (2005).
  • Güner OF , HenryDR. Formula for determining the “goodness of hit lists” in 3D database searches. Network Sci.4 (6), (1998).
  • Cruciani G , CrivoriP, CarruptPA, TestaB. Molecular fields in quantitative structure-permeation relationships: the VolSurf approach. J. Mol. Struct. (Theochem)503 (1–2), 17–30 (2000).
  • Oesterberg F , AqvistJ. Exploring blocker binding to a homology model of the open hERG K+ channel using docking and molecular dynamics methods. FEBS Lett.579 (13), 2939–2944 (2005).
  • Stansfeld PJ , GedeckP, GoslingM, CoxB, MitchesonJS, SutcliffeMJ. Drug block of the hERG potassium channel: insight from modeling. Proteins: Struct. Funct. Bioinf.68 (2), 568–580 (2007).
  • Subbotina J , Yarov-YarovoyV, Lees-MillerJet al. Structural refinement of the hERG1 pore and voltage-sensing domains with ROSETTA-membrane and molecular dynamics simulations. Proteins: Struct. Funct. Bioinf.78 (14), 2922–2934 (2010).
  • Farid R , DayT, FriesnerRA, PearlsteinRA. New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorg. Med. Chem.14 (9), 3160–3173 (2006).
  • Masetti M , CavalliA, RecanatiniM. Modeling the hERG potassium channel in a phospholipid bilayer: molecular dynamics and drug docking studies. J. Comput. Chem.29 (5), 795–808 (2008).
  • Stary A , WackerSJ, BoukhartaLet al. Toward a consensus model of the hERG potassium channel. ChemMedChem5 (3), 455–467 (2010).
  • Moroy G , MartinyVY, VayerP, VilloutreixBO, MitevaMA. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov. Today17 (1–2), 44–55 (2012).
  • Doyle DA , CabralJM, PfuetznerRAet al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science280 (5360), 69–77 (1998).
  • Jiang Y , LeeA, ChenJet al. X-ray structure of a voltage-dependent K+ channel. Nature423 (6935), 33–41 (2003).
  • Jiang Y , LeeA, ChenJ, CadeneM, ChaitBT, MacKinnonR. Crystal structure and mechanism of a calcium-gated potassium channel. Nature417 (6888), 515–522 (2002).
  • Long SB , CampbellEB, MacKinnonR. Crystal structure of a mammalian voltage-dependent shaker family K+ channel. Science309 (5736), 897–903 (2005).
  • Berman HM , WestbrookJ, FengZet al. The protein databank. Nucleic Acids Res.8 (1), 235–242 (2000).
  • Tristani-Firouzi M , SanguinettiMC. Structural determinants and biophysical properties of HERG and KCNQ1 channel gating. J. Mol. Cell. Cardiol.35 (1), 27–35 (2003).
  • Yi H , CaoZ, YinS, DaiC, WuY, LiW. Interaction simulation of hERG K+ channel with its specific BeKm-1 peptide: insights into the selectivity of molecular recognition. J. Proteome Res.6 (2), 611–620 (2007).
  • Imai YN , RyuS, OikiS. Docking model of drug binding to the human ether-a-go-go potassium channel guided by tandem dimer mutant patch-clamp data: a synergic approach. J. Med. Chem.52 (6), 1630–1638 (2009).
  • Du L , LiM, YouQ, XiaL. A novel structure-based virtual screening model for the hERG channel blockers. Biochem. Biophys. Res. Commun.355 (4), 889–894 (2007).
  • Durdagi S , DeshpandeS, DuffHJ, NoskovSY. Modeling of open, closed, and open-inactivated states of the hERG1 channel: structural mechanisms of the state-dependent drug binding. J. Chem. Inf. Model.52 (10), 2760–2774 (2012).
  • Dempsey CE , WrightD, ColensoCK, SessionsRB, HancoxJC. Assessing hERG pore models as templates for drug docking using published experimental constraints: the inactivated state in the context of drug block. J. Chem. Inf. Model.54 (2), 601–612 (2014).
  • Schmidtke P , CiantarM, TheretI, DucrotP. Dynamics of hERG closure allow novel insights into hERG blocking by small molecules. J. Chem. Inf. Model.54 (8), 2320–2333 (2014).
  • Dixon SL , SmondyrevAM, KnollEH, RaoSN, ShawDE, FriesnerRA. PHASE: A New Engine for Pharmacophore Perception, 3D QSAR Model Development, and3D Database Screening. 1. Methodology and Preliminary Results. J. Comput. Aided Mol. Des.20, 647–671 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.