222
Views
0
CrossRef citations to date
0
Altmetric
Review

Photosensitizers Binding to Nucleic Acids as Anticancer Agents

, &
Pages 179-194 | Received 21 Sep 2015, Accepted 11 Nov 2015, Published online: 25 Jan 2016

References

  • Dolmans DE , FukimuraD, JainRK. Photodynamic therapy for cancer. Nat. Rev. Cancer3, 380–387 (2003).
  • Dougherty TJ , GomerCJ, HenedersonBWet al. Photodynamic therapy. J. Natl Cancer Inst.90, 889–905 (1998).
  • Zhao B , HeYY. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Rev. Anticancer Ther.10, 1797–809 (2010).
  • Babilas P , SchremlS, LandthalerM, SzeimiesRM. Photodynamic therapy in dermatology: state-of-the-art. Photodermatol. Photoimmunol. Photomed.26, 118–132 (2010).
  • Iwama D , OtaniA, SasaharaMet al. Photodynamic therapy combined with low-dose intravitreal triamcinolone acetonide for age-related macular degeneration refractory to photodynamic therapy alone. Br. J. Ophthalmol.92, 1352–1356 (2008).
  • Cruess AF , ZlatevaG, PleilAM, WirostkoB. Photodynamic therapy with verteporfin in age-related macular degeneration: a systematic review of efficacy, safety, treatment modifications and pharmacoeconomic properties. Acta Ophthalmol.87, 118–132 (2009).
  • Huang Z , XuH, MeyersADet al. Photodynamic therapy for the tretament of solid tumors – potential and technical challenges. Technol. Cancer Res. Treat.7, 309–320 (2008).
  • Selman SH . Photodynamic therapy of prostate cancer. One urologist's perspective. Photodiag. Photodyn. Ther.4, 26–30 (2007).
  • Muller PJ , WilsonBC. Photodynamic therapy of brain tumours. A work in progress. Lasers Surg. Med.38, 384–389 (2006).
  • Ile M . Advances in photodynamic therapy for the treatment of head and neack cancers. Lasers Surg. Med.38, 349–355 (2006).
  • Huang Z . Photodynamic therapy in China: 25 years of unique history part two – clinical experience. Photodiag. Photodyn. Ther.3, 71–84 (2006).
  • Wyld LM , ReedW, BrownNJ. Differential cell death response to photodynamic therapy is dependent on dose and cell type. Br. J. Cancer84, 1384–1386 (2001).
  • Piette J , ValentiC, VantieghemAet al. Cell death and growth arrest in response to photodynamic therapy with membrane-bound photosensitizers. Biochem. Pharmacol.66, 1651–1659 (2003).
  • Rizvi I , AnbilS, AlagicNet al. PDT dose parameters impact tumoricidal durability and cell death pathways in a 3D ovarian cancer model. Photochem. Photobiol.89, 942–952 (2013).
  • Castano AP , DemidovaTN, HamblinMR. Mechanisms in photodynamic therapy: part one – photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn. Ther.1, 179–293 (2004).
  • Allison RR , DownieGH, CuencaRet al. Photosensitizer in clinical PDT. Photodiagnosis Photodyn. Ther.1, 27–42 (2004).
  • Josefsen LB , BoyleRW. Photodynamic therapy and the development of metal-based photosensitizers. Met. Based Drugs2008, 276109 (2008).
  • Wang LW , HuangZ, LinHet al. Effect of photofrin-mediated phototoxicity on a panel of human pancreatic cancer cells. Photodiagnosis Photodyn. Ther.10, 244–251 (2013).
  • Chen Q , HuangZ, LuckDet al. Preclinical studies in normal canine prostate of a novel palladium-bacteriopheophorbide (WST09) photosensitizer for photodynamic therapy of prostat cancers. Photochem. Photobiol.76, 438–445 (2002)
  • Ronn A , NouriMM, LofgrenLAet al. Human tissue levels and plasma pharmacokinetics of temoporfin (Foscan, mTHPC). Lasers Med. Sci.11, 267–272 (1993).
  • Wang S , BromleyE, XuLet al. Talaporfin sodium. Expert Opin. Pharmacother.11, 133–140 (2010).
  • Sachdeva R , DadgostarH, KaiserPKet al. Verteporfin photodynamic therapy of six eyes with retinal capillary haemangioma. Acta Ophthalmol.88, e334–e340 (2010).
  • Agostinis P , BergK, CengelKAet al. Photodynamic therapy: an update. CA Cancer J. Clin.61, 250–281 (2011).
  • Cheng SH , LoLW. Inorganic nanoparticles for enhanced photodynamic cancer therapy. Curr. Drug Discov. Technol.8, 250–268 (2011).
  • Qin M , HahHJ, KimGet al. Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy. Photochem. Photobiol. Sci.10, 832–841 (2011).
  • Lee YE , KopelmanR. Polymeric nanoparticles for photodynamic therapy. Methods Mol. Biol.726, 151–78 (2011).
  • Derycke AS , de WittePA. Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev.56, 17–30 (2004).
  • Paszko E , EhrhardtC, SengeMOet al. Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn. Ther.8, 14–29 (2011).
  • Lim C-K , HeoJ, ShinSet al. Nanophotosensitizers toward advanced photodynamic therapy of cancer. Cancer Lett.334, 176–187 (2013).
  • Bhatti M , YahiogluG, MilgromLRet al. Targeted photodynamic therapy with multiply-loaded recombinant antibody fragments. Int. J. Cancer122, 1155–1163 (2008).
  • van Dongen GA , VisserGW, VrouenraetsMB. Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv. Drug Deliv. Rev.56, 31–52 (2004).
  • Jankun J . Protein-based nanotechnology: antibody conjugated with photosensitizer in targeted anticancer photoimmunotherapy. Int. J. Oncol.39, 949–953 (2011).
  • Rapozzi V , ZacchignaM, BiffiSet al. Conjugated PDT drug: photosensitizing activity and tissue distribution of PEGylated pheophorbide a. Cancer Biol. Ther.10, 471–482 (2010).
  • Hornung R , FehrMK, WaltHet al. PEG-m-THPC-mediated photodynamic effects on normal rat tissues. Photochem. Photobiol.72, 696–700 (2000).
  • Westerman P , GlanzmannT, AndrejevicSet al. Long circulating half-life and high tumor selectivity of the photosensitizer meta-tetrahydroxyphenylchlorin conjugated to polyethylene glycol in nude mice grafted with a human colon carcinoma. Int. J. Cancer76, 842–850 (1998).
  • Krueger T , AltermattHJ, MettlerDet al. Experimental photodynamic therapy for malignant pleural mesothelioma with pegylated mTHPC. Lasers Surg. Med.32, 61–68 (2003).
  • Ranyuk E , CauchaonN, KlarskowKet al. Phthlacyanine-peptide conjugates: receptor-targeting bufinctional agents for imaging and photodynamic therapy. J. Med. Chem.56, 1520–1534 (2013).
  • Cui L , LinQ, JinCSet al. A PEGylation-free biomimetic porphyrin nanoplatform for personalized cancer theranostics. ACS Nano9 (4), 4484–4495 (2015).
  • Faudale M , CogoiS, XodoLE. Photoactivated cationic alkyl-substituted porphyrin binding to g4-RNA in the 5′-UTR of KRAS oncogene represses translation. Chem. Commun. (Camb).48, 874–876 (2012).
  • Rapozzi V , ZorzetS, ZacchignaMet al. Anticancer activity of cationic Prs in melanoma tumour-bearing mice and mechanistic in vitro studies. Mol. Cancer13, 75–92 (2014).
  • Membrino A , ParamasivamM, CogoiSet al. Cellular uptake and binding of guanidine-modified Pcs to KRAS/HRAS G-quadruplexes. Chem. Commun. (Camb).46, 625–627 (2010).
  • Vummidi BR , NoreenF, AlzeerJet al. Photodynamic agents with anti-metastatic activities. ACS Chem. Biol.8, 1737–1746 (2013).
  • Gaier AJ , McMillinDR. Binding studies of G-quadruplex DNA and Prs: Cu(T4) vs sterically friendly Cu(tD4). Inorg. Chem.54, 4504–4511 (2015).
  • Lang K , MonsingerJ, WagnerovaDM. Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules: models for photodynamic therapy. Coord. Chem. Rev.248, 321–350 (2004).
  • Josefsen LB , BoyleRW. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics2, 916–966 (2012).
  • Reddi E , CecconM, ValdugaGet al. Photophysical properties and antibacterial activity of meso-substituted cationic Prs. Photochem. Photobiol.75, 462–470 (2002).
  • Redmond RW , GamlinJN. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiol.70, 391–475 (1999).
  • Croke DT , PerrouaultL, SariMAet al. Structure-activity relationships for DNA photocleavage by cationic Prs. J. Photochem. Photobiol. B.18, 41–50 (1993).
  • Sentagne C , MeunierB, PaillousN. DNA cleavage photoinduced by new water-soluble zinc Prs linked to 9-methoxyellipticine. J. Photochem. Photobiol. B.16, 47–59 (1992).
  • Ricchelli F , FranchiL, MiottoGet al. Meso-substituted tetra-cationic Prs photosensitize the death of human fibrosarcoma cells via lysosomal targeting. Int. J. Biochem. Cell. Biol.37, 306–319 (2005).
  • Jensen TJ , GraçaM, VicenteHet al. Effect of overall charge and charge distribution on cellular uptake, distribution and phototoxicity of cationic Prs in HEp2 cells. Photochem. Photobiol. B.100, 100–111 (2010).
  • Kessel D , LuguyaR, VicenteMGH. Localization and photodynamic efficacy of two cationic Prs varying in charge distribution. Photochem. Photobiol.78, 431–435 (2003).
  • Osterloh J , VicenteMGH. Mechanisms of porphyrinoid localization in tumors. J. Porphyr. Phthalocyanines6, 305–324 (2002).
  • Engelmann FM , RochaSVO, TomaHEet al. Determination of n-octanol/water partition and membrane binding of cationic Prs. Int. J. Pharm.329, 12–18 (2007).
  • Engelmann FM , MayerI, GabrielliDSet al. Interaction of cationic meso-Prs with liposomes, mitochondria and erythrocytes. J. Bioenerg. Biomembr.39, 175–185 (2007).
  • Benov L . Photodynamic therapy: current status and future directions. Med. Princ. Pract.24, 14–28 (2015).
  • Leung SCH , LoP-C, NgDKPet al. Photodynamic activity of BAM-SiPc, an unsymmetrical bismanino silicon (IV) phthalocyanine, in tumour-bearing nude mice. Br. J. Pharmacol.154, 4–12 (2008).
  • Maizels N . Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat. Struct. Mol. Biol.13, 1055–1059 (2006).
  • Biffi G , TannahillD, McCaffertyJ, BalasubramanianS. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem.5, 182–186 (2013).
  • Lam EY , BeraldiD, TannahillD, BalasubramanianS. G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun.4, 1796–1812 (2013).
  • Cogoi S , ShchekotikhinAE, XodoLE. HRAS is silenced by two neighboring G-quadruplexes and activated by MAZ, a zinc-finger transcription factor with DNA unfolding property. Nucleic Acids Res.42, 8379–8388 (2014).
  • Paramasivam M , MembrinoA, CogoiSet al. Protein hnRNP A1 and its derivative Up1 unfold quadruplex DNA in the human KRAS promoter: implications for transcription. Nucleic Acids Res.37, 2841–2853 (2009).
  • Han H , LangleyDR, RanganA, HurleyLH. Selective interactions of cationic Prs with G-quadruplex structures. J. Am. Chem. Soc.123, 8902–8913 (2001).
  • Cogoi S , XodoLE. Enhanced G4-DNA binding of 5,10,15,20 (N-propyl-4-pyridyl) porphyrin (TPrPyP4): a comparative study with TMPyP4. Chem. Commun. (Camb).46, 7364–7366 (2010).
  • Cogoi S , XodoLE. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res.34, 2536–2549 (2006).
  • Le DD , Di AntonioM, ChanLK, BalasubramanianS. G-quadruplex ligands exhibit differential G-tetrad selectivity. Chem. Commun. (Camb).51, 8048–8050 (2015).
  • Kim MY , Gleason-GuzmanM, IzbickaEet al. The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer Res.63, 3247–3256 (2003).
  • Liu H , LvC, DingBet al. Antitumor activity of G-quadruplex-interactive agent TMPyP4 with photodynamic therapy in ovarian carcinoma cells. Oncol. Lett.8, 409–413 (2014).
  • Le VH , NageshN, LewisEA. Bcl-2 promoter sequence G-quadruplex interactions with three planar and non-planar cationic Prs: TMPyP4, TMPyP3, and TMPyP2. PLoS ONE8, 72462–72471 (2013).
  • Prakash A , KiekenF, MarkyLA, BorgstahlGE. Stabilization of a G-quadruplex from unfolding by replication protein a using potassium and the porphyrin TMPyP4. J. Nucleic Acids2011, 529828–529841 (2011).
  • Du Y , ZhangD, ChenWet al. Cationic N-confused porphyrin derivative as a better molecule scaffold for G-quadruplex recognition. Bioorg. Med. Chem.18, 1111–1116 (2010).
  • Wei C , JiaG, ZhouJet al. Evidence for the binding mode of Prs to G-quadruplex DNA. Phys. Chem. Chem. Phys.11, 4025–4032 (2009).
  • Freyer MW , BuscagliaR, KaplanKet al. Biophysical studies of the c-MYC NHE III1 promoter: model quadruplex interactions with a cationic porphyrin. Biophys. J.92, 2007–2015 (2007).
  • Wei C , WangL, JiaGet al. The binding mode of Prs with cation side arms to (TG4T)4 G-quadruplex: spectroscopic evidence. Biophys. Chem.143, 79–84 (2009).
  • Alzeer J , VummidiBR, RothPJC, LuedtkeNW. Guanidinium-modified phthalocynaines as high affinity G-quadruplex fluorescent probes and transcriptional regulators. Angew. Chem. Int. Ed. Engl.48, 9362–9365 (2009).
  • Gonçalves DP , RodriguezR, BalasubramanianS, SandersJK. Tetramethylpyridiniumporphyrazines – a new class of G-quadruplex inducing and stabilising ligands. Chem. Commun. (Camb).45, 4685–4687 (2006).
  • Ren LG , ZhangAM, HuangJet al. Quaternary ammonium zinc phthalocyanine: inhibiting telomersase by stabilizing G quadruplexs and inducing G-quadruplex structure transition and formation. ChemBioChem8, 775–780 (2007).
  • Alzeer J , LuedtkeNW. pH-mediated fluorescence and G-quadruplex binding of amido Pcs. Biochemistry49, 4339–4348 (2010).
  • Bugaut A , BalasubramanianS. 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res.40, 4727–4741 (2012).
  • Biffi G , Di AntonioM, TannahillD, BalasubramanianS. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat. Chem.6, 75–80 (2014).
  • Maizels N G4-associated human diseases. EMBO Rep.16, 910–922 (2015).
  • Eddy J , MaizelsN. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res.34, 3887–3896 (2006).
  • Kumari S , BugautA, HuppertJL, BalasubramanianS, AnRNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol.3, 218–221 (2007).
  • Kanda M , MatthaeiH, WuJet al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology142, 730–733 (2012).
  • Biankin AV , WaddellN, KassahnKSet al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature491, 399–405 (2012).
  • Kanvah S , JosephJ, SchusterGBet al. Oxidation of DNA: damage to nucleobases. Acc. Chem. Res.43, 280–287 (2009).
  • Yslas EI , AlvarezMG, Rumie VittarNB, BertuzziM, DurantiniEN, RivarolaV. Physiological parameters and biodistribution of 5,10,15,20-tetra (4-methoxyphenyl) porphyrin in rats. Biomed. Pharmacother.56, 498–502 (2002).
  • Leung SC , LoPC, NgDKet al. Photodynamic activity of BAM-SiPc, an unsymmetrical bisamino silicon (IV) phthalocyanine, in tumour-bearing nude mice. Br. J. Pharmacol.154, 4–12 (2008).
  • Camerin M , MagaraggiaM, SoncinMet al. The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. Eur. J. Cancer46, 1910–1918 (2010).
  • Balasubramanian S , HurleyLH, NeidleS. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?Nat. Rev. Drug Discov.10, 261–275 (2011).
  • Collie GW , ParkinsonGN. The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem. Soc. Rev.40, 5867–5892 (2011).
  • Torti D , TrusolinoL. Oncogene addiction as a fundamental rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol. Med.3, 623–636 (2011).
  • Weinstein B , JoeAK. Mechanims of disease: oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat. Clin. Pract. Oncol.3, 448–457 (2006).
  • Bryant KL , ManciasJD, KimmelmanAC, DerCJ. KRAS: feeding panceratic cancer proliferation. Trends Biochem. Sci.39, 91–100 (2014).
  • Ying H , KimmelmanAC, LyssiotisCAet al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell149, 656–670 (2012).
  • D'Cruz CM , GuntherEJ, BoxerRBet al. CMYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous KRAS2 mutations. Nat. Med.7, 235–239 (2001).
  • Huettner CS , ZhangP, Van EttenRA, TenenDG. Reversibility of acute B-cell leukaemia induced by BCR-ABL. Nat. Genet.24, 57–60 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.