2,738
Views
0
CrossRef citations to date
0
Altmetric
Review

Schistosome Sirtuins as Drug Targets

, , , , , , , & show all
Pages 765-782 | Published online: 21 May 2015

References

  • Fenwick A , WebsterJP, Bosque-OlivaEet al. The Schistosomiasis Control Initiative (SCI): rationale, development and implementation from 2002–2008. Parasitology136 (13), 1719–1730 (2009).
  • Doenhoff MJ , CioliD, UtzingerJ. Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis.21 (6), 659–667 (2008).
  • Berriman M , HaasB, LoverdePTet al. The genome of the blood fluke Schistosoma mansoni. Nature460 (7253), 352–358 (2009).
  • Zhou Y , ZhengH, ChenXet al. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature460 (7253), 345–351 (2009).
  • Young ND , JexAR, LiBet al. Whole-genome sequence of Schistosoma haematobium. Nat. Genet.44 (2), 221–225 (2012).
  • Cabezas-Cruz A , LancelotJ, CabyS, OliveiraG, PierceRJ. Epigenetic control of gene function in schistosomes: a source of therapeutic targets?Front. Genet.5, 317 (2014).
  • Herranz D , Munoz-MartinM, CanameroMet al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun.1, 3 (2010).
  • Kaeberlein M . Lessons on longevity from budding yeast. Nature464 (7288), 513–519 (2010).
  • Libert S , GuarenteL. Metabolic and neuropsychiatric effects of calorie restriction and sirtuins. Annu. Rev. Physiol.10, 669–684 (2013).
  • Yuan H , SuL, ChenWY. The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Onco Targets Ther.6, 1399–1416 (2013).
  • Greiss S , GartnerA. Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol. Cells28 (5), 407–415 (2009).
  • Costantini S , SharmaA, RaucciR, CostantiniM, AutieroI, ColonnaG. Genealogy of an ancient protein family: the sirtuins, a family of disordered members. BMC Evol. Biol.13, 1–19 (2013).
  • Religa A , WatersA. Sirtuins of parasitic protozoa: in search of function(s). Mol. Biochem. Parasitol.185 (2), 71–88 (2012).
  • Zheng W . Sirtuins as emerging anti-parasitic targets. Eur. J. Med. Chem.59, 132–140 (2013).
  • Pierce R , Dubois-AbdesselemF, LancelotJ, AndradeL, OliveiraG. Targeting schistosome histone modifying enzymes for drug development. Curr. Pharm. Des.18 (24), 3567–3578 (2012).
  • Lancelot J , CabyS, Dubois-AbdesselemFet al. Schistosoma mansoni sirtuins: characterization and potential as chemotherapeutic targets. PLoS Negl. Trop. Dis.7, e2428 (2013).
  • Frye RA . Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun.273 (2), 793–798 (2000).
  • Cavalier-Smith T . “The origin of Fungi and pseudofungi”. In:Evolutionary biology of the fungi: symposium of the british mycological society.RaynerADM, BrasierCM, MooreD ( Eds). Cambridge Univ. Press, Cambridge, UK, 339–353 (1987).
  • Michishita E , ParkJY, BurneskisJM, BarrettJC, HorikawaI. Evolutionarily conserved and nonconserved cellular localizationos and functions of human SIRT proteins. Mol. Biol. Cell.16 (10), 4623–4635 (2005).
  • North BJ , VerdinE. Interphase nuleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS ONE2 (8), e784, (2007).
  • Vaquero A , ScherMB, LeeDHet al. SirT2 is a histone deacetylase with preference for histone H4Lys 16 during mitosis. Genes Dev.20 (10), 1256–1261 (2006).
  • Scher MB , VaqueroA, ReinbergD. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev.21 (8), 920–928, (2007).
  • Park J , ChenY, TishkoffDXet al. SIRT5 –mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell.50 (6), 919–930 (2013).
  • Matsushita N , YonashiroR, OgataYet al. Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells16 (2), 190–202 (2011).
  • Sigrist CJ , de CastroE, CeruttiLet al. New and continuing developments at PROSITE. Nucl. Acids Res.41, D344–D347 (2013).
  • Choi J-E , MostoslavskyR. Sirtuins, metabolism and DNA repair. Curr. Opin. Genet. Dev.26, 24–32 (2014).
  • Kaeberlein M , McVeyM, GuarenteL. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev.13 (19), 2570–2580 (1999).
  • Tissenbaum HA , GuarenteL. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature410 (6825), 227–230 (2001).
  • Wood JG , RoginaB, LavuSet al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature430 (7000), 686–689 (2004).
  • Westphal CH , DippMA, GuarenteL. A therapeutic role for sirtuins in diseases of aging?Trends Biochem. Sci.32 (12), 555–560 (2007).
  • Guarente L . Calorie restriction and sirtuins revisited. Genes Dev.27 (19), 2072–2085 (2013).
  • Cantò C , AuwerxJ. NAD+ as a signaling molecule modulating metabolism. Cold Spring Harb. Symp. Quant. Biol.76, 291–298 (2011).
  • Brooks CL , GuW. How does SIRT1 affect metabolism, senescence and cancer?Nat. Rev. Cancer9 (2), 123–128 (2009).
  • Ahn BH , KimHS, SongSet al. A role for mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA105 (38), 4447–4452 (2008).
  • Vassilopoulos A , PenningtonJD, AndressonTet al. SIRT3 deacetylates ATP synthase FA complex proteins in response to nutrient- and exercise-induced stress. Antioxid. Redox Signal.21 (4), 551–564 (2014).
  • Jing E , O'NeillBT, RardinMJet al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes62 (10), 3404–3417 (2013).
  • Du J , ZhouY, SuXet al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science334 (6057), 806–809 (2011).
  • Park J , ChenY, TishkoffDXet al. Sirt5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell50 (6), 919–930 (2013).
  • Mostoslavsky R , ChuaKF, LombardDBet al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell124 (2), 315–329 (2006).
  • Zhong L , UrsoAD, ToiberDet al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell140 (2), 280–293 (2010).
  • Warburg O . On the origin of cancer cells. Science123 (3191), 309–314 (1956).
  • Horemans AMC , TielensAGM, van den BerghSG. The reversible effect on the energy metabolism of Schistosoma mansoni cercariae and schistosomula. Mol. Biochem. Parasitol.51 (1), 73–80 (1992).
  • Ford E , VoitR, LisztG, MaginC, GrummtI, GuarenteL. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev.20 (9), 1075–1080 (2006).
  • Shin J , HeM, LiuYet al. Sirt7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep.5 (3), 654–665 (2013).
  • Yohizawa T , KarimMF, SatoYet al. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin proteasome pathway. Cell Metab.19 (4), 712–721 (2014).
  • Ryu D , JoYS, Lo SassoGet al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab.20 (5), 856–869 (2014).
  • Rodgers JT , PuigserverP. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl Acad. Sci. USA104 (31), 12861–12866 (2007)
  • Purushotham A , SchugTT, XuQ, SurapureddiS, GuoX, LiX. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab.9 (4), 327–338 (2009).
  • Hirschey MD , ShimazoT, GoetzmanEet al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature464 (7285), 121–125 (2010).
  • Laurent G , GermanNJ, SahaAKet al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell50 (5), 686–698 (2013).
  • Cosentino C , GriecoD, CostanzoV. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J.30 (3), 546–555 (2010).
  • Jeong SM , XiaoC, FinleyLWet al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamate metabolism. Cancer Cell23 (4), 450–463 (2013).
  • Scheibye-Knudsen M , MitchellSJ, FangEFet al. A high fat diet and NAD(+) activate Sirt1 to rescue premature aging in Cockayne syndrome. Cell Metab.20 (5), 840–855 (2014).
  • Iwahara T , BonasioR, NarendraV, ReinbergD. SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol. Cell. Biol.32 (24), 5022–5034 (2012).
  • Marek M , KannanS, HauserATet al. Structural basis for the inhibition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosoma mansoni. PLoS Pathog.9 (9), e1003645 (2013).
  • Finnin MS , DonigianJR, PavletichNP. Structure of the histone deacetylase SIRT2. Nat. Struct. Biol.8 (7), 621–625 (2001).
  • Jin L , WeiW, JiangYet al. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J. Biol. Chem.284 (36), 24394–24405 (2009).
  • Schuetz A , MinJ, AntoshenkoTet al. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure15 (3), 377–389 (2007).
  • Pan PW , FeldmanJL, DevriesMK, DongA, EdwardsAM, DenuJM. Structure and biochemical functions of SIRT6. J. Biol. Chem.286 (16), 14575–14587 (2011).
  • Zhao X , AllisonD, CondonBet al. The 2.5Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. J. Med. Chem.56 (3), 963–969 (2013).
  • Gertz M , FischerF, NguyenGTet al. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proc. Natl Acad. Sci. USA110 (30), E2772–2781 (2013).
  • Haigis MC , MostoslavskyR, HaigisKMet al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell126 (5), 941–954 (2006).
  • Du J , JiangH, LinH. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogs and 32P-NAD. Biochemistry48 (13), 2878–2890 (2009).
  • Mathias RA , GrecoTM, ObersteinAet al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell159 (7), 1615–1625 (2014).
  • Jiang H , KhanS, WangYet al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature496 (7443), 110–113 (2013).
  • Marek M , OliveiraG, PierceRJ, SipplW, JungM, RomierC. Zinc-dependent erasers of protein acetylation in schistosomes: on the track of HDAC inhibitors as new antiparasitic drugs. Future Med. Chem. (2014) ( In Press).
  • Roth M , ChenWY. Sorting out functions of sirtuins in cancer. Oncogene33 (13), 1609–1620 (2014).
  • Wang Z , ChenW. Emerging roles of SIRT1 in cancer drug resistance. Genes Cancer4 (3–4), 82–90 (2013).
  • Lim JH , LeeYM, ChunYS, ChenJ, KimJE, ParkJW. Sirtuin1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol. Cell38 (6), 864–878 (2010).
  • Kim HS , VassilopoulosA, WangRHet al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell20 (4), 487–499 (2011).
  • Kim HS , PatelK, Muldoon-JacobsKet al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell17 (1), 41–52 (2010).
  • Finley LW , CarracedoA, LeeJet al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1 alpha destabilization. Cancer Cell19 (3), 416–428 (2011).
  • Csibi A , FendtSM, LiCet al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell153 (4), 840–854 (2013).
  • Sebastián C , ZwaansBM, SilbermanDMet al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell151 (6), 1185–1199 (2012).
  • Lu W , ZuoY, FengY, ZhangM. SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumour Biol.35 (11), 10699–10705 (2014).
  • Barber MF , Michishita-KioiE, XiYet al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature487 (7405), 114–118 (2012).
  • Arrowsmith CH , BountraC, FishPV, LeeK, SchapiraM. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov.11 (5), 384–400 (2012).
  • Wall KA , KlisM, KornetJet al. Inhibition of the intrinsic NAD+ glycohydrolase activity of CD38 by carbocyclic NAD analogues. Biochem. J.335 (Pt 3) 631–636 (1998).
  • Slama JT , SimmonsAM. Inhibition of NAD glycohydrolase and ADP-ribosyltransferases by carbocyclic analogues of oxidized nicotinamide adenine dinucleotide. Biochemistry28 (19), 7688–7694 (1989).
  • Schutkowski M , FischerF, RoesslerC, SteegbornC. New assays and approaches for discovery and design of Sirtuin modulators. Expert Opin. Drug Discov.9 (2), 183–199 (2014).
  • Wang J , KimTH, AhnMYet al. Sirtinol, a class III HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human breast cancer cells. Int. J. Oncol.41 (3), 1101–1109 (2012).
  • Lara E , MaiA, CalvaneseVet al. Salermide, a sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene28 (6), 781–791 (2009).
  • Neugebauer RC , SipplW, JungM. Inhibitors of NAD+-dependent histone deacetylases (sirtuins). Curr. Pharm. Des.14 (6), 562–573 (2008).
  • Cen Y . Sirtuin inhibitors: the approach to affinity and selectivity. Biochim. Biophys. Acta1804 (8), 1635–1644 (2010).
  • Sauve AA , SchrammVL. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry42 (19), 9249–9256 (2003).
  • Schmidt MT , SmithBC, JacksonMD, DenuJM. Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J. Biol. Chem.279 (38), 40122–40129 (2004).
  • Heltweg B , GatbontonT, SchulerADet al. Antitumor activity of a small molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res.66 (8), 4368–4377 (2006).
  • Suzuki T , ImaiK, NakagawaH, MiyataN. 2-Anilobenzamides as SIRT inhibitors. ChemMedChem1 (10), 1059–1062 (2006).
  • Sanders BD , JacksonB, BrentMet al. Identification and characterization of novel sirtuin inhibitor scaffolds. Bioorg Med. Chem.17 (19), 7031–7041 (2009).
  • Trapp J , MeierR, HongwisetD, KassakMU, SipplW, JungM. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins). ChemMedChem2 (10), 1419–1434 (2007).
  • Trapp J , JochumA, MeierRet al. Adenosine mimetics as inhibitors of NAD+-dependent histone deacetylases, from kinase to sirtuin inhibition. J. Med. Chem.49 (25), 7307–7316 (2006).
  • Napper AD , HixonJ, McDonaghTet al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J. Med. Chem.48 (25), 8045–8054 (2005).
  • Uciechowska U , SchemiesJ, NeugebauerRCet al. Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations and biological testing. ChemMedChem3 (12), 1965–1976 (2008).
  • Outeiro TF , KontopoulosE, AltmannSMet al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science317 (5837), 516–519 (2007).
  • Sakai T , MatsumotoY, IshikawaMet al. Design, synthesis and structure-activity relationship studies of novel sirtuin 2(SIRT2) inhibitors with a benzamide skeleton. Bioorg. Med. Chem.23 (2), 328–339 (2015).
  • Di Fruschia P , ZacharioudakisE, LiuCet al. The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 inhibitor that is neuroprotective in and in vitro Parkinson's disease model. ChemMedChem10 (1), 69–82 (2015).
  • Cui H , KamalZ, AiTet al. Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach. J. Med. Chem.57 (20), 8340–8357 (2014).
  • Hirao M , PosakonyJ, NelsonMet al. Identification of selective inhibitors of NAD+-dependent deacetylases using phenotypic screens in yeast. J. Biol. Chem.278 (52), 52773–52782 (2003).
  • Grozinger CM , ChaoED, BlackwellHE, MoazedD, SchreiberSL. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem.276 (42), 38837–38843 (2001).
  • Mai A , MassaS, LavuSet al. Design, synthesis and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. J. Med. Chem.48 (24), 7789–7795 (2005).
  • Kiviranta PH , SuuronenT, WallenEAet al. N(epsilon)-thioacetyl-lysine-containing tri-, tetra- and pentapeptides as SIRT1 and SIRT2 inhibitors. J. Med. Chem.52 (7), 2153–2156 (2009).
  • Suenkel B , FischerF, SteegbornC. Inhibition of the human deacylase Sirtuin 5 by the indole GW5074. Bioorg. Med. Chem. Lett.23 (1), 143–146 (2013).
  • Roessler C , NowakT, PannekMet al. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors. Angew. Chem. Int. Ed. Engl.53 (40), 10728–10732 (2014).
  • Maurer B , RumpfT, ScharfeMet al. Inhibitors of the NAD(+)-dependent protein desuccinylase and demalonylase Sirt5. ACS Med. Chem. Lett.3 (12), 1050–1053 (2012).
  • Disch JS , EvindarG, ChiuCHet al. Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2 and SIRT3. J. Med. Chem.56 (9), 3666–3679 (2013).
  • Schiedel M , MarekM, LancelotJet al. Fluorescence-based screening assays for the NAD+-dependent histone deacetylase smSirt2 from Schistosoma mansoni. J. Biomol. Screen.20 (1), 112–121 (2015).
  • Duraisingh MT , VossTS, MartyAJet al. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum. Cell121 (1), 13–24 (2005).
  • Tonkin CJ , CarretCK, DuraisinghMTet al. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol.7 (4), e84 (2009).
  • Vergnes B , SerenoD, TavaresJet al. Targeted disruption of cytosolic SIR2 deacetylase discloses its essential role in Leishmania survival and proliferation. Gene363, 85–96 (2005).
  • Vergnes B , VanhilleL, OuaissiA, SerenoD. Stage-specific antileishmanial activity of an inhibitor of SIR2 histone deacetylase. Acta Trop.94 (2), 107–115 (2005).
  • Tavares J , OuaissiA, Kong Thoo LinPet al. Bisnaphthalimidopropyl derivatives as inhibitors of Leishmania SIR2 related protein 1. ChemMedChem5 (1), 140–147 (2010).
  • Pierce RJ . Anti-parasitic drug discovery. Pan Europ. Networks Sci. Technol.11, 192–193 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.