182
Views
0
CrossRef citations to date
0
Altmetric
Review

SecA: A Potential Antimicrobial Target

, , , &
Pages 989-1007 | Published online: 11 Jun 2015

References

  • Falagas ME , KarageorgopoulosDE. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. Clin. Infect. Dis.46 (7), 1121–1122 (2008).
  • Falagas ME , KoletsiPK, BliziotisIA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J. Med. Microbiol.55 (12), 1619–1629 (2006).
  • Queenan AM , BushK. Carbapenemases: the Versatile β-Lactamases. Clin. Microbiol. Rev.20 (3), 440–458 (2007).
  • Naas T , NordmannP, VedelG, PoyartC. Plasmid-mediated carbapenem-hydrolyzing β-Lactamase KPC in a Klebsiella pneumoniae isolate from France. Antimicrob. Agents. Chemother.49 (10), 4423–4424 (2005).
  • Perez F , EndimianiA, RayAJet al. Carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae across a hospital system: impact of post-acute care facilities on dissemination. J. Antimicrob. Chemother.65 (8), 1807–1818 (2010).
  • Levy SB , MarshallB. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med.10 (12), S122–S129 (2004).
  • Taubes G . The bacteria fight back. Science321 (5887), 356–361 (2008).
  • Birmingham MC , RaynerCR, MeagherAKet al. Linezolid for the treatment of multidrug-resistant, Gram-positive infections: experience from a compassionate-use program. Clin. Infect. Dis.36 (2), 159–168 (2003).
  • Robbel L , MarahielMA. Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J. Biol. Chem.285 (36), 27501–27508 (2010).
  • Wang J , SoissonSM, YoungKet al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature441 (7091), 358–361 (2006).
  • Saier MH . Protein secretion and membrane insertion systems in Gram-negative bacteria. J. Membr. Biol.214 (2), 75–90 (2006).
  • Vrontou E , EconomouA. Structure and function of SecA, the preprotein translocase nanomotor. Biochim. Biophys. Acta1694, 67–80 (2004).
  • Mori H , ItoK. The Sec protein-translocation pathway. Trends Microbiol.9, 494–500 (2001).
  • Van Klompenburg W , RidderAN, van RaalteALet al. In vitro membrane integration of leader peptidase depends on the Sec machinery and anionic phospholipids and can occur post-translationally. FEBS Lett.413 (1), 109–114 (1997).
  • Lill R , DowhanW, WicknerW. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell60 (2), 271–280 (2006).
  • Chitlaru T , GatO, GozlanYet al. Differential proteomic analysis of the Bacillus anthracis secretome: distinct plasmid and chromosome CO2-dependent cross talk mechanisms modulate extracellular proteolytic activities. J. Bacteriol.188 (10), 3551–3571 (2006).
  • Rigel NW , BraunsteinM. A new twist on an old pathway – accessory Sec systems. Mol. Microbiol.69 (2), 291–302 (2008).
  • Schmidt MG , RolloEE, GrodbergJet al. Nucleotide-sequence of the SecA gene and Seca(Ts) mutations preventing protein export in Escherichia Coli. J. Bacteriol.170 (8), 3404–3414 (1988).
  • Siboo IR , ChaffinDO, RubensCEet al. Characterization of the accessory Sec system of Staphylococcus aureus. J. Bacteriol.190 (18), 6188–6196 (2008).
  • Braunstein M1 , BrownAM, KurtzS, JacobsWRJr. Two nonredundant SecA homologues function in mycobacteria. J. Bacteriol.183 (24), 6979–6990 (2001).
  • Bensing BA , SullamPM. An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol. Microbiol.44 (4), 1081–1094 (2002).
  • Lenz LL , PortnoyD.A. Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol. Microbiol.45 (4), 1043–1056 (2002).
  • Lenz LL1 , MohammadiS, GeisslerA, PortnoyDA. SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc. Natl Acad. Sci. USA100 (21), 12432–12437 (2003).
  • Chen QH , Wu Fives-TaylorPM. Investigating the role of secA2 in secretion and glycosylation of a fimbrial adhesin in Streptococcus parasanguisFW213. Mol. Microbiol.53 (3), 843–856 (2004).
  • Takamatsu D , BensingBA, SullamPM. Genes in the accessory sec locus of Streptococcus gordonii have three functionally distinct effects on the expression of the platelet-binding protein GspB. Mol. Microbiol.52 (1), 189–203 (2004).
  • Zelazny AM1 , CalhounLB, LiL, SheaYR, FischerSH. Identification of Mycobacterium species by secA1 sequences. J. Clin. Microbiol.43 (3), 1051–1058 (2005).
  • Siboo IR1 , ChaffinDO, RubensCE, SullamPM. Characterization of the accessory Sec system of Staphylococcus aureus. J. Bacteriol.190 (18), 6188–6196 (2008).
  • Bensing BA , SeepersaudR, YenYT, SullamPM. Selective transport by SecA2: an expanding family of customized motor proteins. Biochim. Biophys. Acta1843 (8), 1674–1686 (2014).
  • Guo XV , MonteleoneM, KlotzscheMet al. Silencing Mycobacterium smegmatis by using tetracycline repressors. J. Bacteriol.189 (13), 4614–4623 (2007).
  • Sassetti CM , BoydD.H, RubinEJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol.48 (1), 77–84 (2003).
  • Monk IR et al. Morphotypic conversion in Listeria monocytogenes biofilm formation: biological significance of rough colony isolates. Appl Environ Microbiol70 (11), 6686–94 (2004).
  • Braunstein M , EspinosaBJ, ChanJ, BelisleJT, JacobsWRJr. SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol. Microbiol.48 (2), 453–464 (2003).
  • Caspers M , FreudlR. Corynebacterium glutamicum possesses two secA homologous genes that are essential for viability. Arch. Microbiol.189 (6), 605–610 (2008).
  • Fagan RP , FairweatherN.F. Clostridium difficile has two parallel and essential Sec secretion systems. J. Biol. Chem.286 (31), 27483–27493 (2011).
  • Hou JM , D'LimaNG, RigelNWet al. ATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins and its importance for SecA2 function in macrophages. J. Bacteriol.190 (14), 4880–4887 (2008).
  • Bensing BA , SullamP.M. Characterization of Streptococcus gordonii SecA2 as a paralogue of SecA. J. Bacteriol.191 (11), 3482–3491 (2009).
  • D'Lima NG , TeschkeC.M. ADP-dependent conformational changes distinguish Mycobacterium tuberculosis SecA2 from SecA1. J. Biol. Chem.289 (4), 2307–2317 (2014).
  • Chen Q1 , WuH, KumarR, PengZ, Fives-TaylorPM. SecA2 is distinct from SecA in immunogenic specificity, subcellular distribution and requirement for membrane anchoring in Streptococcus parasanguis. FEMS Microbiol. Lett.264 (2), 174–181 (2006).
  • Eser M , EhrmannM. SecA-dependent quality control of intracellular protein localization. Proc. Natl Acad. Sci. USA100 (23), 13231–13234 (2003).
  • Akita M , ShinkaiA, MatsuyamaS, MizushimaS. SecA, an essential component of the secretory machinery of Escherichia coli, exists as homodimer. Biochem. Biophys. Res. Commun.74 (1), 211–216 (1991).
  • Moran U , PhillipsR, MiloR. SnapShot: key numbers in biology. Cell141 (7), 1262–1262 (2010).
  • Cabelli RJ , DolanKM, QianLPet al. Characterization of membrane-associated and soluble states of SecA protein from wild-type and SecA51(TS) mutant strains of Escherichia coli. J. Biol. Chem.266 (36), 24420–24427 (1991).
  • Woodbury RL , HardySJS, RandallLL. Complex behavior in solution of homodimeric SecA. Protein Sci.11 (4), 875–882 (2002).
  • Driessen AJM . SecA, the peripheral subunit of the Escherichia coli precursor protein translocase, is functional as a dimer. Biochemistry32 (48), 13190–13197 (1993).
  • Kusters I , van den BogaartG, KedrovAet al. Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level. Structure19 (3), 430–439 (2011).
  • Kusters I , DriessenAM. SecA, a remarkable nanomachine. Cell. Mol. Life Sci.68 (12), 2053–2066 (2011).
  • Cordin O , BanroquesJ, TannerNKet al. The DEAD-box protein family of RNA helicases. Gene367, 17–37 (2006).
  • Tanner NK , LinderP. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol. Cell8 (2), 251–262 (2001).
  • Cooper DB , SmithVF, CraneJMet al. SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. J. Mol. Biol.382 (1), 74–87 (2008).
  • Papanikou E , KaramanouS, BaudCet al. Identification of the preprotein binding domain of SecA. J. Biol. Chem.280 (52), 43209–43217 (2005).
  • Papanikolau Y , PapadovasilakiM, RavelliRBGet al. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor. J. Mol. Biol.366 (5), 1545–1557 (2007).
  • Gelis I , BonvinAMJJ, KeramisanouDet al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell131 (4), 756–769 (2007).
  • Bu Z , WangL, KendallDA. Nucleotide binding induces changes in the oligomeric state and conformation of Sec A in a lipid environment: a small-angle neutron-scattering study. J. Mol. Biol.332 (1), 23–30 (2003).
  • Chen Y , PanX, TangYet al. Full-length Escherichia coli SecA dimerizes in a closed conformation in solution as determined by cryo-electron microscopy. J. Biol. Chem.283 (43), 28783–28787 (2008).
  • Chen Y , TaiPC, SuiSF. The active ring-like structure of SecA revealed by electron crystallography: conformational change upon interaction with SecB. J. Struct. Biol.159 (1), 149–153 (2007).
  • Shilton B , SvergunDI, VolkovVVet al. Escherichia coli SecA shape and dimensions. FEBS Lett.436 (2), 277–282 (1998).
  • Osborne AR , ClemonsWM, RapoportTA. A large conformational change of the translocation ATPase SecA. Proc. Natl Acad. Sci. USA101 (30), 10937–10942 (2004).
  • Hunt JF , WeinkaufS, HenryLet al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science297 (5589), 2018–2026 (2002).
  • Sharma V , ArockiasamyA, RonningDRet al. Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc. Natl Acad. Sci. USA100 (5), 2243–2248 (2003).
  • Zimmer J , LiWK, RapoportTA. A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA. J. Mol. Biol.364 (3), 259–265 (2006).
  • Vassylyev DG , MoriH, VassylyevaMNet al. Crystal structure of the translocation ATPase SecA from Thermus thermophilus reveals a parallel, head-to-head dimer. J. Mol. Biol.364 (3), 248–258 (2006).
  • Nikaido H , ZgurskayaHI. Antibiotic efflux mechanisms. Curr. Opin. Infect. Dis.12, 529–536 (1999).
  • Segers K , KlaassenH, EconomouAet al. Development of a high-throughput screening assay for the discovery of small-molecule SecA inhibitors. Anal. Biochem.413 (2), 90–96 (2011).
  • Zimmer J , RapoportTA. Conformational flexibility and peptide interaction of the translocation ATPase SecA. J. Mol. Biol.394 (4), 606–612 (2009).
  • Zimmer J , NamY, RapoportTA. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature455 (7215), 936–943 (2008).
  • Osborne AR , RapoportTA. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell129 (1), 97–110 (2007).
  • Pettersen EF , GoddardTD, HuangCCet al. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comp. Chem.25 (13), 1605–1612 (2004).
  • Tang Y , PanX, ChenYet al. Dimeric SecA couples the preprotein translocation in an asymmetric manner. PloS ONE6 (1), e16498 (2011).
  • Baud C , KaramanouS, SianidisGet al. Allosteric communication between signal peptides and the SecA protein DEAD motor ATPase domain. J. Biol. Chem.277 (16), 13724–13731 (2002).
  • Karamanou S , VrontouE, SianidisGet al. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol. Microbiol.34 (5), 1133–1145 (1999).
  • Sianidis G , KaramanouS, VrontouEet al. Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. EMBO J.20 (5), 961–970 (2001).
  • Price A , EconomouA, DuongFet al. Separable ATPase and membrane insertion domains of the SecA subunit of preprotein translocase. J. Biol. Chem.271 (49), 31580–31584 (1996).
  • De Keyzer J , Van der SluisEO, SpelbrinkREJet al. Covalently dimerized SecA is functional in protein translocation. J. Biol. Chem.280 (42), 35255–35260 (2005).
  • Jilaveanu LB , OliverD. SecA Dimer Cross-Linked at Its Subunit Interface Is Functional for Protein Translocation. J. Bacteriol.188 (1), 335–338 (2006).
  • Jilaveanu LB , ZitoCR, OliverD. Dimeric SecA is essential for protein translocation. Proc. Natl Acad. Sci. USA102 (21), 7511–7516 (2005).
  • Or E , NavonA, RapoportT. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J.21 (17), 4470–4479 (2002).
  • Or E , BoydD, GonSet al. The Bacterial ATPase SecA Functions as a Monomer in Protein Translocation. J. Biol. Chem.280 (10), 9097–9105 (2005).
  • Duong F . Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J.22 (17), 4375–4384 (2003).
  • Tziatzios C , SchubertD, LotzMet al. The Bacterial Protein–Translocation Complex: SecYEG Dimers Associate with One or Two SecA Molecules. J. Mol. Biol.340 (3), 513–524 (2004).
  • Papanikou E , KaramanouS, EconomouA. Bacterial protein secretion through the translocase nanomachine. Nat. Rev. Microbiol.5 (11), 839–851 (2007).
  • Rapoport TA . Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature450 (7170), 663–669 (2007).
  • Lycklama a Nijeholt JA , DriessenAJM. The bacterial Sec-translocase: structure and mechanism. Philos. Trans. R. Soc. Lond. B Biol. Sci.2367 (1592), 1016–1028 (2012).
  • Economou A , WicknerW. SecA promotes preprotein translocation by undergoing Atp-driven cycles of membrane insertion and deinsertion. Cell78 (5), 835–843 (1994).
  • Economou A , PoglianoJA, BeckwithJet al. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell83 (7), 1171–1181 (1995).
  • Jilaveanu LB , OliverDB. In vivo membrane topology of Escherichia coli SecA ATPase reveals extensive periplasmic exposure of multiple functionally important domains clustering on one face of SecA. J. Biol. Chem.282 (7), 4661–4668 (2007).
  • Gouridis G , KaramanouS, GelisIet al. Signal peptides are allosteric activators of the protein translocase. Nature462 (7271), 363–368 (2009).
  • Karamanou S , GouridisG, PapanikouEet al. Preprotein-controlled catalysis in the helicase motor of SecA. EMBO J.26 (12), 2904–2914 (2007).
  • Fak JJ , ItkinA, CiobanuDDet al. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. Biochemistry43 (23), 7307–7327 (2004).
  • Smith PA , PowersME, RobertsTCet al. In vitro activities of arylomycin natural-product antibiotics against Staphylococcus epidermidis and other coagulase-negative Staphylococci. Antimicrob. Agents Chemother.55 (3), 1130–1134 (2011).
  • Li W , SchulmanS, BoydDet al. The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol. Cell26 (4), 511–521 (2007).
  • Segers K , AnnéJ. Traffic jam at the bacterial Sec Translocase: targeting the SecA nanomotor by small-molecule inhibitors. Chem. Biol.18 (6), 685–698 (2011).
  • Fekkes P , vanderDoesC, DriessenAJM. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J.16 (20), 6105–6113 (1997).
  • Randall LL , CraneJM, LiuGet al. Sites of interaction between SecA and the chaperone SecB, two proteins involved in export. Protein Sci.13 (4), 1124–1133 (2004).
  • Mao C , HardySJS, RandallLL. Maximal efficiency of coupling between ATP hydrolysis and translocation of polypeptides mediated by SecB requires two protomers of SecA. J. Bacteriol.191 (3), 978–984 (2009).
  • Suo Y , HardySJS, RandallLL. Orientation of SecA and SecB in complex, derived from disulfide cross-linking. J. Bacteriol.193 (1), 190–196 (2011).
  • Engelman DM , SteitzTA. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell23 (2), 411–422 (1981).
  • Joly JC , WicknerW. The SecA and SecY subunits of translocase are the nearest neighbors of a translocating preprotein, shielding it from phospholipids. EMBO J.12 (1), 255–263 (1993).
  • Cannon KS , OrE, ClemonsWMet al. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell. Biol.169 (2), 219–225 (2005).
  • Tani K , TokudaH, MizushimaS. Translocation of ProOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli. Effect of membrane energization. J. Biol. Chem.265 (28), 17341–17347 (1990).
  • Shiozuka K , TaniK, MizushimaSet al. The proton motive force lowers the level of ATP required for the in vitro translocation of a secretory protein in Escherichia coli. J. Biol. Chem.265 (31), 18843–18847 (1990).
  • Nouwen N , de KruijffB, TommassenJ. prlA suppressors in Escherichia coli relieve the proton electrochemical gradient dependency of translocation of wild-type precursors. Proc. Natl Acad. Sci. USA93 (12), 5953–5957 (1996).
  • Nishiyama K-i , FukudaA, MoritaKet al. Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation. EMBO J.18 (4), 1049–1058 (1999).
  • Bessonneau P , BessonV, CollinsonIet al. The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J.21 (5), 995–1003 (2002).
  • Driessen AJ , NouwenN. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem.77, 643–667 (2008).
  • Schiebel E , DriessenAJ, HartlFUet al. Delta mu H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell64 (5), 927–939 (1991).
  • Van der Wolk JPW , de WitJG, DriessenAJM. The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. EMBO J.16 (24), 7297–7304 (1997).
  • Benach J , ChouY-T, FakJJet al. Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J. Biol. Chem.278 (6), 3628–3638 (2003).
  • Robson A , GoldVAM, HodsonSet al. Energy transduction in protein transport and the ATP hydrolytic cycle of SecA. Proc. Natl Acad. Sci. USA106 (13), 5111–5116 (2009).
  • Keramisanou D , BirisN, GelisIet al. Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. Nat. Struct. Mol. Biol.13 (7), 594–602 (2006).
  • Ding HY , MukerjiI, OliverD. Nucleotide and phospholipid-dependent control of PPXD and C-domain association for SecA ATPase. Biochemistry42 (46), 13468–13475 (2003).
  • De Keyzer J , van der DoesC, KloostermanTGet al. Direct demonstration of ATP-dependent release of SecA from a translocating preprotein by surface plasmon resonance. J. Biol. Chem.278 (32), 29581–29586 (2003).
  • Wang HW , ChenY, YangHet al. Ring-like pore structures of SecA: implication for bacterial protein-conducting channels. Proc. Natl Acad. Sci. USA100 (7), 4221–4226 (2003).
  • Hsieh YH , ZhangH, LinBRet al. SecA alone can promote protein translocation and Ion-channel activity:SecYEG increases efficiency and signal peptide specificity. J. Biol. Chem.286, 44702–44709 (2005).
  • You Z , LiaoM, ZhangHet al. Phospholipids induce conformational changes of SecA to form membrane-specific domains: AFM structures and implication on protein-conducting channels. PloS ONE8 (8), e72560 (2013).
  • Chen X , BrownT, TaiPC. Identification and characterization of protease-resistant SecA fragments: secA has two membrane-integral forms. J. Biol. Chem.180 (3), 527–537 (1998).
  • Chen X , XuH, TaiPC. A significant fraction of functional SecA is permanently embedded in the membrane. SecA cycling on and off the membrane is not essential during protein translocation. J. Biol. Chem.271 (47), 29698–29706 (1996).
  • Hu HJ , HolleyJ, HeJet al. To be or not to be: predicting soluble SecAs as membrane proteins. IEEE Trans. NanoBioscience6 (2), 168–179 (2007).
  • Wang H , NaB, YangHet al. Additional in vitro and in vivo evidence for SecA functioning as dimers in the membrane: dissociation into monomers is not essential for protein translocation in Escherichia coli. J. Biol. Chem.190 (4), 1413–1418 (2008).
  • Hsieh YH , ZhangH, WangHet al. Reconstitution of functionally efficient SecA-dependent protein-conducting channels: transformation of low-affinity SecA-liposome channels to high-affinity SecA-SecYEG-SecDF.YajC channels. Biochem. Biophys. Res. Commun.431 (3), 388–392 (2013).
  • Tang Y , PanX, TaiPCet al. Electron microscopic visualization of asymmetric precursor translocation intermediates: SecA functions as a dimer. Sci. China Life Sci.53 (9), 1049–1056 (2010).
  • Yang YB , LianJ, TaiPC. Differential translocation of protein precursors across SecY-deficient membranes of Escherichia coli: SecY is not obligatorily required for translocation of certain secretory proteins in vitro. J. Bacteriol.179 (23), 7386–7393 (1997).
  • Nithianantham S , ShiltonBH. Analysis of the isolated SecA dead motor suggests a mechanism for chemical–mechanical coupling. J. Mol. Biol.383 (2), 380–389 (2008).
  • Hsieh YH , ZhangH, LinBRet al. SecA alone can promote protein translocation and Ion-channel activity:SecYEG increases efficiency and signal peptide specificity. J. Biol. Chem.286, 44702–44709 (2005)
  • Parish CA , CruzMdl, SmithSKet al. Antisense-guided isolation and structure elucidation of pannomycin, a substituted cis-decalin from Geomyces pannorum. J. Nat. Prod.72 (1), 59–62 (2008).
  • Huang Y-J , WangH, GaoF-Bet al. Fluorescein analogues inhibit SecA ATPase: the first sub-micromolar inhibitor of bacterial protein translocation. ChemMedChem7 (4), 571–577 (2012).
  • Gouridis G , KaramanouS, KoukakiMet al. In vitro assays to analyze translocation of the model secretory preprotein alkaline phosphatase. Methods Mol. Biol.619, 157–172 (2010).
  • Lanzetta PA , AlvarezLJ, ReinachPSet al. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem.100 (1), 95–97 (1979).
  • Mitchell C , OliverD. Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. Mol. Microbiol.10 (3), 483–497 (1993).
  • Alksne LE , BurgioP, HuWet al. Identification and analysis of bacterial protein secretion inhibitors utilizing a seca-lacz reporter fusion system. Antimicrob. Agents Chemother.44 (6), 1418–1427 (2000).
  • Jang M-Y , JongheSD, SegersKet al. Synthesis of novel 5-amino-thiazolo[4,5-d]pyrimidines as E. coli and S. aureus SecA inhibitors. Biorg. Med. Chem.19 (1), 702–714 (2011).
  • Chen LL , TaiPC. ATP Is Essential for protein translocation into Escherichia-Coli membrane-vesicles. Proc. Natl Acad. Sci. USA82 (13), 4384–4388 (1985).
  • Sugie Y , InagakiS, KatoYet al. CJ-21,058, a New SecA inhibitor isolated from a fungus. J. Antibiot.55 (1), 25–29 (2002).
  • Lin BR , GieraschLM, JiangCet al. Electrophysiological studies in Xenopus oocytes for the opening of Escherichia coli SecA-dependent protein-conducting channels. J. Membr. Biol.214 (2), 103–113 (2006).
  • Vrontou E , KaramanouS, BaudCet al. Global co-ordination of protein translocation by the SecA IRA1 switch. J. Biol. Chem.279 (21), 22490–22497 (2004).
  • Y. Ito K , ChibaS, PoglianoK. Divergent stalling sequences sense and control cellular physiology. Biochem. Biophys. Res. Commun.393 (1), 1–5 (2010).
  • Loew O . Ueber das Verhalten des Azoimids zu lebenden Organismen. Ber. deut. chem. Ges.24, 2947–2953 (1891).
  • Oliver DB , CabelliRJ, DolanKMet al. Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. Proc. Natl Acad. Sci. USA87 (21), 8227–8231 (1990).
  • Klein M , HofmannB, KloseMet al. Isolation and characterization of a Bacillus subtilis secA mutant allele conferring resistance to sodium azide. FEMS Microbiol. Lett.124 (3), 393–397 (1994).
  • Nakane A , TakamatsuH, OguroAet al. Acquisition of azide-resistance by elevated SecA ATPase activity confers azide-resistance upon cell growth and protein translocation in Bacillus subtilis. Microbiology141 (Pt 1), 113–121 (1995).
  • Eichler J , WicknerW. The SecA subunit of Escherichia coliPreprotein Translocase Is Exposed to the Periplasm. J. Bacteriol.180 (21), 5776–5779 (1998).
  • Bowler MW , MontgomeryMG, LeslieAGet al. How azide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl Acad. Sci. USA103 (23), 8646–8649 (2006).
  • Yoshikawa S , Shinzawa-ItohK, NakashimaRet al. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science280 (5370), 1723–1729 (1998).
  • Stoddard BL , RingeD, PetskoGA. The structure of iron superoxide dismutase from Pseudomonas ovalis complexed with the inhibitor azide. Protein Eng.4 (2), 113–119 (1990).
  • Yound JM , WangJH. The nature of binding of competitive inhibitors to alcohol dehydrogenases. J. Biol. Chem.246 (9), 2815–2821 (1971).
  • Zaitsev VN , ZaitsevaI, PapizMet al. An X-ray crystallographic study of the binding sites of the azide inhibitor and organic substrates to ceruloplasmin, a multi-copper oxidase in the plasma. J. Biol. Inorg. Chem.4 (5), 579–587 (1999).
  • Chen W , HuangY-j, GundalaSRet al. The first low μM SecA inhibitors. Bioorg. Med. Chem.18 (4), 1617–1625 (2010).
  • Akula N , ZhengH, HanFQet al. Discovery of novel SecA inhibitors of Candidatus Liberibacter asiaticus by structure based design. Bioorg. Med. Chem.21 (14), 4183–4188 (2011).
  • Li M , HuangY-J, TaiPCet al. Discovery of the first SecA inhibitors using structure-based virtual screening. Biochem. Biophys. Res. Commun.368 (4), 839–845 (2008).
  • Ruiz N. , FalconeB., KahneD.et al. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell121, 307–317 (2005).
  • Cui J , JinJ, HsiehY-H, YangHet al. Design, Synthesis and biological evaluation of rose bengal analogues as seca inhibitors. ChemMedChem8 (8), 1384–1393 (2013).
  • Hsieh YH , HuangJ-S, JinY.-J.et al. Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities. Biochem. Biophys. Res. Commun.454, 308–312 (2014)
  • Chaudhary AS , JinJ, ChenPC, TaiW., WangB. Design, syntheses and evaluation of 4-oxo-5-cyano thiouracils as SecA inhibitors. Bioorg. Med. Chem.23, 105–117 (2015).
  • Crowther GJ , QuadriSA, Shannon-AlferesBJet al. A Mechanism-based whole-cell screening assay to identify inhibitors of protein export in Escherichia coli by the sec pathway. J. Biomol. Screen.17 (4), 535–541 (2012).
  • Nikaido H , ZgurskayaHI. Antibiotic efflux mechanisms. Curr. Opin. Infect. Dis.12 (6), 529–536 (1999).
  • Masaoka Y , UenoY, MoritaYet al. A two-component multidrug efflux pump, EbrAB, in Bacillus subtilis. J. Biol. Chem.182 (8), 2307–2310 (2000).
  • Van Bambeke F , BalziE, TulkensPM. Antibiotic efflux pumps. Biochem. Pharmacol.60 (4), 457–470 (2000).
  • Lomovskaya O , WatkinsW. Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J. Mol. Microbiol. Biotech.3 (2), 225–236 (2001).
  • Markham PN , NeyfakhAA. Efflux-mediated drug resistance in Gram-positive bacteria. Curr. Opin. Microbiol.4 (5), 509–514 (2001).
  • Levy SB . Active efflux, a common mechanism for biocide and antibiotic resistance. J. App. Microbiol.92, 65S–71S (2002).
  • Zhang Y , Eric BallardC, ZhengSLet al. Design, synthesis, and evaluation of efflux substrate-metal chelator conjugates as potential antimicrobial agents. Bioorg. Med. Chem. lett.17 (3), 707–711 (2007).
  • Chen W. , ChaudharyA., CuiJ.et al. SecA inhibitors: next generation antimicrobials. J. Chin. Pharm. Sci.21, 526–530 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.