532
Views
0
CrossRef citations to date
0
Altmetric
Review

Modifying Peptides to Enhance Permeability

Pages 1009-1021 | Published online: 11 Jun 2015

References

  • Marzinzik AL , VorherrT. Towards intracellular delivery of peptides. Chimia67 (12), 899–905 (2013).
  • Qian Z , LaRochelleJR, JiangBet al. Endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry53 (24), 4034–4046 (2014).
  • Erazo-Oliveras A , NajjarK, DayaniL, WangTY, JohnsonGA, PelloisJP. Protein delivery into live cells by incubation with an endosomolytic agent. Nat. Meth.11 (8), 861–867 (2014).
  • Lipinski CA , LombardoF, DominyBW, FeeneyPJ. Experimental and computational approaches to estimate solubility in drug discovery and development settings. Adv. Drug Deliv. Rev.46, 3–26 (2001).
  • Over B , McCarrenP, ArturssonPet al. Impact of stereospecific intramolecular hydrogen bonding on cell permeability and physicochemical properties. J. Med. Chem.57, 2746–2754 (2014).
  • Giordanetto F , KihlbergJ. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties?J. Med. Chem.57, 278–295 (2014).
  • Villar EA , BeglovD, ChennamadhavuniSet al. How proteins bind macrocycles. Nat. Chem. Biol.10, 723–731 (2014).
  • Veber DF , JohnsonSR, ChengHY, SmithBR, WardWW, KoppleKD. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem.45, 2615–2623 (2002).
  • Rezai T , BockJE, ZhouMV, KalyanaramanC, LokeyRS, JacobsonMP. Conformational flexibility, internal hydrogen Bonding, and passive membrane permeability: Successful in silico prediction of the relative permeabilities of cyclic peptides. J. Am. Chem. Soc.128, 14073–14080 (2006).
  • White TR , RenzelmanCM, RandACet al. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat. Chem. Biol.7, 810–817 (2011).
  • Lewis I , SchaeferM, WagnerTet al. A detailed investigation on conformation, permeability and PK properties of two related cyclohexapeptides. Int. J. Pept. Prot. Ther. doi:10.1007/s10989-014-9447-3 (2015).
  • Lin YC , HissJA, SchneiderPet al. Piloting the membranolytic activities of peptides with a self-organizing map. ChemBioChem15, 2225–2531 (2014).
  • Smith D , ArturssonP, AvdeefAet al. Passive lipoidal diffusion and carrier-mediated cell uptake are both important mechanisms of membrane permeation in drug disposition. Mol. Pharm.11 (6), 1727–1738 (2014).
  • Di L , ArturssonP, AvdeefAet al. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug Discov. Today17 (15–16), 905–912 (2012).
  • Bergström CA , HolmR, J⊘rgensenSAet al. Early pharmaceutical profiling to predict oral drug absorption: current status and unmet needs. Eur. J. Pharm. Sci.57, 173–199 (2014).
  • Hill TA , LohmanRJ, HoangHNet al. Cyclic penta- and hexaleucine peptides without N-methylation are orally absorbed. ACS Med. Chem. Lett.5 (10), 1148–1151 (2014).
  • Dollery CT . Intracellular drug concentration. Clin. Pharmacol. Ther.93 (3), 263–266 (2013).
  • Hann MM , SimpsonGL. Intracellular drug concentration and disposition – the missing link. Methods68, 283–285 (2014).
  • Cannazza G , CazzatoAS, MarraciniCet al. Internalization and stability of a thymidylate synthase peptide inhibitor in ovarian cancer. J. Med. Chem.57 (24), 10551–10556 (2014).
  • Mateus A , MatssonP, ArturssonP. Rapid measurement of intracellular unbound drug concentrations. Mol. Pharm.10, 2467–2478 (2013).
  • Goetz GH , PhilippeL, ShapiroMJ. EPSA: A novel supercritical fluid chromatography technique enabling the design of permeable cyclic peptides. ACS Med. Chem. Lett.5, 1167–1172 (2014).
  • Alex A , MillanDS, PerezM, WakenhutF, WhitlockGA. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. Med. Chem. Commun.2, 669–674 (2011).
  • Schumacher TNM , MayrLM, MinorDLJret al. Identification of D-Peptide ligands through mirror-image phage display. Science271, 1854–1857 (1996).
  • Kwon YK , KodadekT. Quantitative comparison of the relative cell permeability of cyclic and linear peptides. Chem. Biol.14, 671–677 (2007).
  • Fukuzumi T , JuL, BodeJW. Chemoselective cyclization of unprotected linear peptides by α-ketoacid-hydroxylamine amine-ligation. Org. Biomol. Chem.10, 5837–5844 (2012).
  • Noda H , ErosG, BodeJW. Rapid ligations with equimolar reactants in water with the potassium acyltrifluoroborate (KAT) amide formation. J. Am. Chem. Soc.136, 5611–5614 (2014).
  • Nguyen GKT , WangS, QiuY, HemuX, LianY, TamJP. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat. Chem. Biol.10, 732–738 (2014).
  • Hili R , RaiV, YudinAK. Macrocyclization of linear peptides enabled by amphoteric molecules. J. Am. Chem. Soc.132, 2889–2891 (2010).
  • Tam JP , MiaoZW. Stereospecific pseudoproline ligation of N-terminal Serine, Threonine, or Cysteine-containg unprotected peptides. J. Am. Chem. Soc.121, 9013–9022 (1999).
  • Guéret SM , Peter MeierP, RothHJ. Cyclic carbo-isosteric depsipeptides and peptides as a novel class of peptidomimetic. Chem. Commun.16 (5), 1502–1505 (2014).
  • Giovannoni J , DidierjeanC, DurandPet al. Synthesis and structure of symmetrical bicyclic hexapeptides bridged by metathesis reaction. Org. Lett.6 (20), 3449–3452 (2004).
  • Chu Q , MoelleringRE, HiliunskiGJet al. Towards understanding cell penetration by stapled peptides. Med. Chem. Commun.6, 111–119 (2015).
  • De Araujo AD , HoangHN, KokWMet al. Comparative α-helicity of cyclic pentapeptides in water. Angew. Chem. Int. Ed. Engl.53, 6965–6969 (2014).
  • Walensky LD , BirdGH. Hydrocarbon-stapled peptides: principles, practice, and progress. J. Med. Chem.57, 6275–6288 (2014).
  • Brown CJ , QuahST, JongJet al. Stapled Peptides with improved potency and specificity that activate p53. ACS Chem. Biol.8 (3), 506–512 (2013).
  • Lundin S , VilhardtH. Absorption of 1-deamino-8-D-arginine vasopressin from different regions of the gastrointestinal tract in rabbits. Acta Endocrinol. (Copenh.)112, 457–460 (1986).
  • Nielsen DS , HoangHN, LohmanR, DinessF, FairlieDP. Total synthesis, structure, and oral absorption of a thiazole cyclic peptide, sanguinamide A. Org. Lett.14 (22), 5720–5723 (2012).
  • El Tayar N , MarkAE, VallatP, BrunneRM, TestaB, van GunsterenWF. Solvent-dependent conformation and hydrogen bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations. J. Med. Chem.36, 3757–3764 (1993).
  • Wenger RM , FranceJ, BovermannG, WalliserL, WidmerA, WidmerH. The 3D structure of a cyclosporin analogue in water is nearly identical to the cyclophilin-bound cyclosporine conformation. FEBS Lett.340 (3), 255–259 (1994).
  • Biron E , ChatterjeeJ, OvadiaOet al. Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew. Chem Int. Ed. Engl.47 (14), 2595–2599 (2008).
  • Beck JG , ChatterjeeJ, LauferBet al. Intestinal permeability of cyclic peptides: common key backbone motifs Identified. J. Am. Chem. Soc.134, 12125–12133 (2012).
  • Fricker G , FahrA, BeglingerC, KisselT, ReiterG, DreweJ. Permeation enhancement of octreotide by specific bile salts in rats and human subjects: in vitro in vivo correlations. Br. J. Parmacol.117 (1), 217–223 (1996).
  • Rand AC , LeungSSF, EngHet al. Optimizing PK properties of cyclic peptides: the effect of side chain substitutions on permeability and clearance. Med. Chem. Comm.3 (10), 1282–1289 (2012).
  • Wang CK , NorthfieldSE, CollessBet al. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients. Proc. Natl Acad. Sci. USA111 (49), 17505–17509 (2014).
  • Hewitt WM , LeungSSF, PyeCRet al. Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. J. Am. Chem. Soc.137 (2), 715–721 (2015).
  • Rafi SB , HearnBR, VedanthamP, JacobsonMP, RensloAR. Predicting and improving the membrane permeability of peptidic small molecules. J. Med. Chem.55/7, 3163–3169 (2012).
  • Thansandote P , HarrisRM, DexterHLet al. Improving the passive permeability of macrocyclic peptides: balancing permeability with other physicochemical properties. Bioorg. Med. Chem.23, 322–327 (2015).
  • Hoveyda HR , MarsaultE, GagnonRet al. Optimization of the potency and pharmacokinetic properties of a macrocyclic Ghrelin receptor agonist (Part I): development of Ulimorelin (TZP-101) from hit to clinic. J. Med. Chem.54, 8305–8320 (2011).
  • Chaume G , SimonJ, CaupeèneC, LensenN, MicletE, BrigaudT. Incorporation of CF3–pseudoprolines into peptides: a methodological study. J. Org. Chem.78, 10144–10153 (2013).
  • Rabong C , JordisU, PhopaseJ. NXO building blocks for backbone modification of peptide and preparation of pseudopeptides. J. Org. Chem. Adv.75, 2492–2500 (2010).
  • Rabong C , SchusterC, LiptajTet al. NXO beta structure mimicry: an ultrashort turn/hairpin mimic that folds in water. RSC Adv.4, 21351–21360 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.