109
Views
0
CrossRef citations to date
0
Altmetric
Review

Interactions of HIV-1 Proteins as Targets for Developing Anti-HIV-1 Peptides

, &
Pages 1055-1077 | Published online: 11 Jun 2015

References

  • Jones S , ThorntonJM. Principles of protein-protein interactions. Proc. Natl Acad. Sci. USA93 (1), 13–20 (1996).
  • Larsen TA , OlsonAJ, GoodsellDS. Morphology of protein–protein interfaces. Structure6 (4), 421–427 (2014).
  • Trakselis MA , AlleySC, IshmaelFT. Identification and mapping of protein–protein interactions by a combination of cross-linking, cleavage, and proteomics. Bioconjug. Chem.16 (4), 741–750 (2005).
  • Chisholm ST , CoakerG, DayB, StaskawiczBJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell124 (4), 803–814 (2006).
  • König R , ZhouY, EllederDet al. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell135 (1), 49–60 (2014).
  • Dixon RA , LambCJ. Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant Mol. Biol.41 (1), 339–367 (1990).
  • Shapira SD , Gat-ViksI, ShumBO Vet al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell139 (7), 1255–1267 (2009).
  • Baker B , ZambryskiP, StaskawiczB, Dinesh-KumarSP. Signaling in plant-microbe interactions. Science276 (5313), 726–733 (1997).
  • Gu W , SchneiderJW, CondorelliG, KaushalS, MahdaviV, Nadal-GinardB. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell72 (3), 309–324 (1993).
  • Zervos AS , GyurisJ, BrentR. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell72 (2), 223–232 (1993).
  • Kolch W . Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J.351 (2), 289–305 (2000).
  • Pawson T , NashP. Protein–protein interactions define specificity in signal transduction. Genes Dev.14 (9), 1027–1047 (2000).
  • Moran MF , KochCA, AndersonDet al. Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc. Natl Acad. Sci. USA87 (21), 8622–8626 (1990).
  • Imagawa M , ChiuR, KarinM. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell51 (2), 251–260 (1987).
  • Fields S , SongO. A novel genetic system to detect protein–protein interactions. Nature340 (6230), 245–246 (1989).
  • Wenger RH . Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J.16 (10), 1151–1162 (2002).
  • Wu JY , ManiatisT. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell75 (6), 1061–1070 (1993).
  • Campbell S , VogtVM. Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J. Virol.69 (10), 6487–6497 (1995).
  • Sandalon Z , OppenheimA. Self-assembly and protein–protein interactions between the SV40 capsid proteins produced in insect cells. Virology237 (2), 414–421 (1997).
  • Ceres P , ZlotnickA. Weak protein–protein interactions are sufficient to drive assembly of hepatitis B virus capsids†. Biochemistry41 (39), 11525–11531 (2002).
  • Nielsen AL , Oulad-AbdelghaniM, OrtizJA, RemboutsikaE, ChambonP, LossonR. Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol. Cell7 (4), 729–739 (2001).
  • Murzina N , VerreaultA, LaueE, StillmanB. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell4 (4), 529–540 (1999).
  • Blobel G , DobbersteinB. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol.67 (3), 835–851 (1975).
  • Passow H . Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. In : Reviews of Physiology, Biochemistry and Pharmacology, Volume 103 SE - 2. Springer, Berlin Heidelberg, 61–203 (1986).
  • Jager S , CimermancicP, GulbahceNet al. Global landscape of HIV-human protein complexes. Nature481 (7381), 365–370 (2012).
  • Brass AL , DykxhoornDM, BenitaYet al. Identification of host proteins required for HIV infection through a functional genomic screen. Science319 (5865), 921–926 (2008).
  • Evans P , DampierW, UngarL, TozerenA. Prediction of HIV-1 virus-host protein interactions using virus and host sequence motifs. BMC Med. Genomics2 (1), 27 (2009).
  • Pinney JW , DickersonJE, FuW, Sanders-BeerBE, PtakRG, RobertsonDL. HIV–host interactions: a map of viral perturbation of the host system. AIDS23 (5), 549–554 (2009).
  • Von Mering C , KrauseR, SnelBet al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature417 (6887), 399–403 (2002).
  • Maulik U , BhattacharyyaM, MukhopadhyayA, BandyopadhyayS. Identifying the immunodeficiency gateway proteins in humans and their involvement in microRNA regulation. Mol. Biosyst.7 (6), 1842–1851 (2011).
  • Fu W , Sanders-BeerBE, KatzKS, MaglottDR, PruittKD, PtakRG. Human immunodeficiency virus type 1, human protein interaction database at NCBI. Nucleic Acids Res.37 (Suppl. 1), D417–D422 (2009).
  • Moustafa N , EldinA S, KassimKS. Predicting HIV-1 human protein interactions using data mining without information loss. I JMEIT.1 (1), 25–41 (2013).
  • Dyer MD , MuraliTM, SobralBW. The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog.4 (2), e32 (2008).
  • Gavin A-C , AloyP, GrandiPet al. Proteome survey reveals modularity of the yeast cell machinery. Nature440 (7084), 631–636 (2006).
  • Hakes L , PinneyJW, RobertsonDL, LovellSC. Protein-protein interaction networks and biology -what's the connection?Nat. Biotech.26 (1), 69–72 (2008).
  • Fahey M , BennettM, MahonCet al. GPS-Prot: a web-based visualization platform for integrating host-pathogen interaction data. BMC Bioinformatics12 (1), 298 (2011).
  • Budayeva H , CristeaI. A mass spectrometry view of stable and transient protein interactions [Internet]. In : Advancements of Mass Spectrometry in Biomedical Research SE - 11.WoodsAG, DarieCC ( Eds.). Springer International Publishing, 263–282 (2014).
  • Li S . Proteomics Defines Protein Interaction Network of Signaling Pathways. In : Bioinformatics of Human Proteomics SE - 2.WangX ( Ed.). Springer Netherlands, 17–38 (2013).
  • Morris JH , KnudsenGM, VerschuerenEet al. Affinity purification–mass spectrometry and network analysis to understand protein-protein interactions. Nat. Protoc.9 (11), 2539–2554 (2014).
  • Emig-Agius D , OlivieriK, PacheLet al. An integrated map of HIV-human protein complexes that facilitate viral infection. PLoS ONE9 (5), e96687 (2014).
  • Ptak RG , FuW, Sanders-BeerBEet al. Cataloguing the HIV type 1 human protein interaction network. AIDS Res. Hum. Retroviruses24 (12), 1497–1502 (2008).
  • Wheeler DL , BarrettT, BensonDAet al. Database resources of the national center for biotechnology information. Nucleic Acids Res.35 (Suppl. 1), D5–D12 (2007).
  • Van Dijk D , ErtaylanG, BoucherC, SlootP. Identifying potential survival strategies of HIV-1 through virus-host protein interaction networks. BMC Syst. Biol.4 (1), 96 (2010).
  • MacPherson JI , DickersonJE, PinneyJW, RobertsonDL. Patterns of HIV-1 protein interaction identify perturbed host-cellular subsystems. PLoS Comput. Biol.6 (7), e1000863 (2010).
  • Frankel AD , YoungJAT. HIV-1: fifteen proteins and an RNA. Annu. Rev. Biochem.67 (1), 1–25 (1998).
  • Tavassoli A . Targeting the protein-protein interactions of the HIV lifecycle. Chem. Soc. Rev.40 (3), 1337–1346 (2011).
  • Malim MH , EmermanM. HIV-1 accessory proteins–ensuring viral survival in a hostile environment. Cell Host Microbe3 (6), 388–398 (2008).
  • Sakai K , DimasJ, LenardoMJ. The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest. Proc. Natl Acad. Sci. USA103 (9), 3369–3374 (2006).
  • Taylor BS , SobieszczykME, McCutchanFE, HammerSM. The challenge of HIV-1 subtype diversity. N. Engl. J. Med.358 (15), 1590–1602 (2008).
  • Rappaport M , KoganJ. HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology8, 25 (2011).
  • Tong AHY , DreesB, NardelliGet al. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science295 (5553), 321–324 (2002).
  • Benyamini H , FriedlerA. Using peptides to study protein–protein interactions. Future Med. Chem.2 (6), 989–1003 (2010).
  • Tolsma SS , VolpertO V, GoodDJ, FrazierWA, PolveriniPJ, BouckN. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J. Cell Biol.122 (2), 497–511 (1993).
  • Srivastava P . Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol.20 (1), 395–425 (2002).
  • Katzen F , ChangG, KudlickiW. The past, present and future of cell-free protein synthesis. Trends Biotechnol.23 (3), 150–156 (2005).
  • Zhu H , SnyderM. Protein chip technology. Curr. Opin. Chem. Biol.7 (1), 55–63 (2003).
  • Roberts MJ , BentleyMD, HarrisJM. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev.54 (4), 459–476 (2002).
  • Engelhard VH , Altrich-VanlithM, OstankovitchM, ZarlingAL. Post-translational modifications of naturally processed MHC-binding epitopes. Curr. Opin. Immunol.18 (1), 92–97 (2006).
  • Chandra K , RoyTK, NaoumJN, GilonC, GerberRB, FriedlerA. A highly efficient in situ N-acetylation approach for solid phase synthesis. Org. Biomol. Chem.12 (12), 1879–1884 (2014).
  • Kerppola TK . Visualization of molecular interactions by fluorescence complementation. Nat. Rev. Mol. Cell Biol.7 (6), 449–456 (2006).
  • Dieterich DC , LeeJJ, LinkAJ, GraumannJ, TirrellDA, SchumanEM. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat. Protoc.2 (3), 532–540 (2007).
  • Lee LC , HunterJJ, MujeebA, TurckC, ParslowTG. Evidence for α-helical conformation of an essential n-terminal region in the human Bcl2 protein. J. Biol. Chem.271 (38), 23284–23288 (1996).
  • Sattler M , LiangH, NettesheimDet al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science275 (5302), 983–986 (1997).
  • Eichler J . Peptides as protein binding site mimetics. Curr. Opin. Chem. Biol.12 (6), 707–713 (2008).
  • Walensky LD , KungAL, EscherIet al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science305 (5689), 1466–1470 (2004).
  • Murray JK , GellmanSH. Targeting protein–protein interactions: lessons from p53/MDM2. Pept. Sci.88 (5), 657–686 (2007).
  • Phan J , LiZ, KasprzakAet al. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. J. Biol. Chem.285 (3), 2174–2183 (2010).
  • Pazgier M , LiuM, ZouGet al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc. Natl Acad. Sci. USA106 (12), 4665–4670 (2009).
  • Hayouka Z , RosenbluhJ, LevinAet al. Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. Proc. Natl Acad. Sci. USA104 (20), 8316–8321 (2007).
  • Lawrence SH , RamirezUD, TangLet al. Shape shifting leads to small-molecule allosteric drug discovery. Chem. Biol.15 (6), 586–596 (2008).
  • Freed E . HIV-1 Replication. Somat. Cell Mol. Genet.26 (1–6), 13–33 (2001).
  • Freed EO . HIV-1 and the host cell: an intimate association. Trends Microbiol.12 (4), 170–177 (2004).
  • Freed EO , MartinMA. The role of human immunodeficiency virus type 1 envelope glycoproteins in virus infection. J. Biol. Chem.270 (41), 23883–23886 (1995).
  • Kwong PD , WyattR, RobinsonJ, SweetRW, SodroskiJ, HendricksonWA. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature393 (6686), 648–659 (1998).
  • Moore JP , BinleyJ. HIV: envelope's letters boxed into shape. Nature393 (6686), 630–631 (1998).
  • Wyatt R , KwongPD, DesjardinsEet al. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature393 (6686), 705–711 (1998).
  • Pancera M , MajeedS, BanY-EAet al. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proc. Natl Acad. Sci. USA107 (3), 1166–1171 (2010).
  • Eckert DM , KimPS. Mechanisms of viral membrane fusion and its inhibition. Ann. Rev. Biochem.70 (1), 777–810 (2001).
  • Deng H , LiuR, EllmeierWet al. Identification of a major co-receptor for primary isolates of HIV-1. Nature381 (6584), 661–666 (1996).
  • Dragic T , LitwinV, AllawayGPet al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature381 (6584), 667–673 (1996).
  • He J , ChenY, FarzanMet al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature385 (6617), 645–649 (1997).
  • Chan DC , FassD, BergerJM, KimPS. Core structure of gp41 from the HIV Envelope Glycoprotein. Cell89 (2), 263–273 (2014).
  • Marsh M , HeleniusA. Virus entry: open sesame. Cell124 (4), 729–740 (2006).
  • Doranz BJ , RuckerJ, YiYet al. A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell85 (7), 1149–1158 (1996).
  • Gross A , MöbiusK, HaußnerC, DonhauserN, SchmidtB, EichlerJ. Mimicking protein-protein interactions through peptide-peptide interactions: HIV-1 gp120 and CXCR4. Front. Immunol.4 (257), 1–11 (2013).
  • Esté JA , TelentiA. HIV entry inhibitors. Lancet370 (9581), 81–88 (2015).
  • Rao BS , GuptaKK, KumariS, GuptaA, PujithaK. Conserved HIV wide spectrum antipeptides-a hope for HIV treatment. Adv. Tech. Biol. Med.1 (1), 1–9 (2013).
  • Teissier E , PeninF, PécheurE-I. Targeting cell entry of enveloped viruses as an antiviral strategy. Molecules16 (1), 221–250 (2010).
  • Pascual R , ContrerasM, FedorovA, PrietoM, VillalaínJ. Interaction of a peptide derived from the N-heptad repeat region of gp41 Env ectodomain with model membranes. modulation of phospholipid phase behavior. Biochemistry44 (43), 14275–14288 (2005).
  • Huang C , LamSN, AcharyaPet al. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science317 (5846), 1930–1934 (2007).
  • Brower ET , SchönA, KleinJC, FreireE. Binding thermodynamics of the N-terminal peptide of the CCR5 coreceptor to HIV-1 envelope glycoprotein gp120†. Biochemistry48 (4), 779–785 (2009).
  • Davis CB , DikicI, UnutmazDet al. Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J. Exp. Med.186 (10), 1793–1798 (1997).
  • Rizzuto CD , WyattR, Hernández-RamosNet al. A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science280 (5371), 1949–1953 (1998).
  • Möbius K , DürrR, HaußnerC, DietrichU, EichlerJ. A functionally selective synthetic mimic of the HIV-1 co-receptor CXCR4. Chem. Eur. J.18 (27), 8292–8295 (2012).
  • Gross A , MöbiusK, HaußnerC, DonhauserN, SchmidtB, EichlerJ. Exploring converse molecular mechanisms of anti-HIV-1 antibodies using a synthetic CXCR4 mimic. Bioorg. Med. Chem. Lett.22 (19), 6099–6102 (2012).
  • Zennou V , PetitC, GuetardD, NerhbassU, MontagnierL, CharneauP. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell101 (2), 173–185 (2000).
  • Kohlstaedt LA , WangJ, FriedmanJM, RicePA, SteitzTA. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science256 (5065), 1783–1790 (1992).
  • Wang J , SmerdonSJ, JägerJet al. Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Proc. Natl Acad. Sci. USA91 (15), 7242–7246 (1994).
  • Jochmans D . Novel HIV-1 reverse transcriptase inhibitors. Vir. Res.134 (1–2), 171–185 (2008).
  • Iwatani Y , ChanDSB, WangFet al. Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res.35 (21), 7096–7108 (2007).
  • Wang X , AoZ, ChenL, KobingerG, PengJ, YaoX. The cellular antiviral protein APOBEC3G interacts with HIV-1 reverse transcriptase and inhibits its function during viral replication. J. Virol.86 (7), 3777–3786 (2012).
  • Stainforth DA , AinaT, ChristensenCet al. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature433 (7024), 403–406 (2005).
  • Yu X , YuY, LiuBet al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science302 (5647), 1056–1060 (2003).
  • Mangeat B , TurelliP, CaronG, FriedliM, PerrinL, TronoD. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature424 (6944), 99–103 (2003).
  • Miyagi E , OpiS, TakeuchiHet al. Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J. Virol.81 (24), 13346–13353 (2007).
  • Li X-Y , GuoF, ZhangL, KleimanL, CenS. APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. J. Biol. Chem.282 (44), 32065–32074 (2007).
  • Guo F , CenS, NiuM, SaadatmandJ, KleimanL. Inhibition of -primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. J. Virol.80 (23), 11710–11722 (2006).
  • Guo F , SaadatmandJ, NiuM, KleimanL. Roles of Gag and NCp7 in facilitating annealing to viral RNA in human immunodeficiency virus type 1. J. Virol.83 (16), 8099–8107 (2009).
  • Druillennec S , DongCZ, EscaichSet al. A mimic of HIV-1 nucleocapsid protein impairs reverse transcription and displays antiviral activity. Proc. Natl Acad. Sci. USA96 (9), 4886–4891 (1999).
  • De Rocquigny H , GabusC, VincentA, Fournié-ZaluskiMC, RoquesB, DarlixJL. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers. Proc. Natl Acad. Sci. USA89 (14), 6472–6476 (1992).
  • Craigie R . HIV Integrase, a Brief Overview from Chemistry to Therapeutics. J. Biol. Chem.276 (26), 23213–23216 (2001).
  • Delelis O , CarayonK, SaibA, DeprezE, MouscadetJ-F. Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology5 (1), 114 (2008).
  • Schröder ARW , ShinnP, ChenH, BerryC, EckerJR, BushmanF. HIV-1 integration in the human genome favors active genes and local hotspots. Cell110 (4), 521–529 (2014).
  • Kalpana G V , MarmonS, WangW, CrabtreeGR, GoffSP. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science266 (5193), 2002–2006 (1994).
  • Stevenson M , StanwickT L, DempseyM P, LamonicaCA. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J.9 (5), 1551–1560 (1990).
  • Chen JC , KrucinskiJ, MierckeLJet al. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc. Natl Acad. Sci. USA97 (15), 8233–8238 (2000).
  • Dyda F , HickmanAB, JenkinsTM, EngelmanA, CraigieR, DaviesDR. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science266 (5193), 1981–1986 (1994).
  • Marchand C , JohnsonAA, SemenovaE, PommierY. Mechanisms and inhibition of HIV integration. Drug Discov. Today Dis. Mech.3 (2), 253–260 (2006).
  • Guiot E , CarayonK, DelelisOet al. Relationship between the oligomeric status of HIV-1 integrase on DNA and enzymatic activity. J. Biol. Chem.281 (32), 22707–22719 (2006).
  • Van Maele B , BusschotsK, VandekerckhoveL, ChristF, DebyserZ. Cellular co-factors of HIV-1 integration. Trends Biochem. Sci.31 (2), 98–105 (2014).
  • Levin A , Armon-OmerA, RosenbluhJet al. Inhibition of HIV-1 integrase nuclear import and replication by a peptide bearing integrase putative nuclear localization signal. Retrovirology6 (112), 1–16 (2009).
  • Leh H , BrodinP, BischerourJet al. Determinants of Mg2+-dependent activities of recombinant human immunodeficiency virus type 1 integrase†. Biochemistry39 (31), 9285–9294 (2000).
  • Li M , CraigieR. Processing of viral DNA ends channels the HIV-1 Integration Reaction to Concerted Integration. J. Biol. Chem.280 (32), 29334–29339 (2005).
  • Faure A , CalmelsC, DesjobertCet al. HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Res.33 (3), 977–986 (2005).
  • Chaurushiya MS , WeitzmanMD. Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair8 (9), 1166–1176 (2009).
  • Lewinski MK , BushmanFD. Retroviral DNA integration–mechanism and consequences. Adv. Genet.55, 147–181 (2005).
  • Parissi V , CaumontA, de SoultraitVRet al. The lethal phenotype observed after HIV-1 integrase expression in yeast cells is related to DNA repair and recombination events. Gene322 (0), 157–168 (2003).
  • Oyebisi Jegede , JohnBabu, Roberto diSanto, DamianJ, McCollJW, MEQ-M. HIV type 1 integrase inhibitors: from basic research to clinical implications. AIDS Rev.10 (3), 172–189 (2008).
  • Freed CSA and EO . Anti-HIV-1 therapeutics: from FDA-approved drugs to hypothetical future targets. Mol. Interv. Apr.9 (2), 70–74 (2009).
  • Maes M , LoyterA, FriedlerA. Peptides that inhibit HIV-1 integrase by blocking its protein-protein interactions. FEBS J.279 (16), 2795–2809 (2012).
  • Camarasa M-J , VelázquezS, San-FélixA, Pérez-PérezM-J, GagoF. Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: A single mode of inhibition for the three HIV enzymes?Antiviral. Res.71 (2–3), 260–267 (2006).
  • Soultrait VR d , DesjobertC, Tarrago-LitvakL. Peptides as new inhibitors of HIV-1 reverse transcriptase and integrase. Curr. Med. Chem.10 (18), 1765–1778 (2003).
  • Goldgur Y , DydaF, HickmanAB, JenkinsTM, CraigieR, DaviesDR. Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proc. Natl Acad. Sci. USA95 (16), 9150–9154 (1998).
  • Neamati N , SunderS, PommierY. Design and discovery of HIV-1 integrase inhibitors. Drug Discov. Today2 (11), 487–498 (1997).
  • Sourgen F , MarounRG, FrèreVet al. A synthetic peptide from the human immunodeficiency virus Type-1 integrase exhibits coiled-coil properties and interferes with the in vitro integration activity of the enzyme. Euro J. Biochem.240 (3), 765–773 (1996).
  • Maroun RG , GayetS, BenleulmiMSet al. Peptide inhibitors of HIV-1 integrase dissociate the enzyme oligomers†. Biochemistry40 (46), 13840–13848 (2001).
  • Zhao L , O'ReillyMK, ShultzMD, ChmielewskiJ. Interfacial peptide inhibitors of HIV-1 integrase activity and dimerization. Bioorg. Med. Chem. Lett.13 (6), 1175–1177 (2003).
  • Van Aerschot A . Oligonucleotides as antivirals: dream or realistic perspective?Antiviral Res.71 (2–3), 307–316 (2006).
  • Archakov AI , GovorunVM, DubanovA Vet al. Protein-protein interactions as a target for drugs in proteomics. Proteomics3 (4), 380–391 (2003).
  • Emiliani S , MousnierA, BusschotsKet al. Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J. Biol. Chem.280 (27), 25517–25523 (2005).
  • Turlure F , DevroeE, SilverP A, EngelmanA. Human cell proteins and human immunodeficiency virus DNA integration. Front. Biosci.9, 3187–3208 (2004).
  • Al-Mawsawi LQ , NeamatiN. Blocking interactions between HIV-1 integrase and cellular cofactors: an emerging anti-retroviral strategy. Trends Pharmacol. Sci.28, 526–535 (2007).
  • Busschots K , VercammenJ, EmilianiSet al. The interaction of LEDGF/p75 with integrase is lentivirus-specific and promotes DNA binding. J. Biol. Chem.280 (18), 17841–17847 (2005).
  • Llano M , VanegasM, FregosoOet al. LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J. Virol.78 (17), 9524–9537 (2004).
  • Cherepanov P , MaertensG, ProostPet al. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem.278 (1), 372–381 (2003).
  • Vandegraaff N , DevroeE, TurlureF, SilverPA, EngelmanA. Biochemical and genetic analyses of integrase-interacting proteins lens epithelium-derived growth factor (LEDGF)/p75 and hepatoma-derived growth factor related protein 2 (HRP2) in preintegration complex function and HIV-1 replication. Virology346 (2), 415–426 (2006).
  • Ciuffi A , LlanoM, PoeschlaEet al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med.11 (12), 1287–1289 (2005).
  • Llano M , DelgadoS, VanegasM, PoeschlaEM. Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase. J. Biol. Chem.279 (53), 55570–55577 (2004).
  • Cherepanov P , SunZ-YJ, RahmanS, MaertensG, WagnerG, EngelmanA. Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat. Struct. Mol. Biol.12 (6), 526–532 (2005).
  • Llano M , SaenzDT, MeehanAet al. An essential role for LEDGF/p75 in HIV integration. Science314 (5798), 461–464 (2006).
  • Cherepanov P , DevroeE, SilverPA, EngelmanA. Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J. Biol. Chem.279 (47), 48883–48892 (2004).
  • Cherepanov P , AmbrosioALB, RahmanS, EllenbergerT, EngelmanA. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc. Natl Acad. Sci. USA102 (48), 17308–17313 (2005).
  • Levin A , BenyaminiH, HayoukaZ, FriedlerA, LoyterA. Peptides that bind the HIV-1 integrase and modulate its enzymatic activity – kinetic studies and mode of action. FEBS J.278 (2), 316–330 (2011).
  • Hayouka Z , LevinA, MaesMet al. Mechanism of action of the HIV-1 integrase inhibitory peptide LEDGF 361–370. Biochem. Biophys. Res. Commun.394 (2), 260–265 (2010).
  • Hayouka Z , HurevichM, LevinAet al. Cyclic peptide inhibitors of HIV-1 integrase derived from the LEDGF/p75 protein. Bioorg. Med. Chem.18 (23), 8388–8395 (2010).
  • Maes M , LevinA, HayoukaZ, ShalevDE, LoyterA, FriedlerA. Peptide inhibitors of HIV-1 integrase: From mechanistic studies to improved lead compounds. Bioorg. Med. Chem.17 (22), 7635–7642 (2009).
  • Al-Mawsawi LQ , ChristF, DayamR, DebyserZ, NeamatiN. Inhibitory profile of a LEDGF/p75 peptide against HIV-1 integrase: Insight into integrase–DNA complex formation and catalysis. FEBS Lett.582 (10), 1425–1430 (2008).
  • Desimmie BA , HumbertM, LescrinierEet al. Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication. Mol. Ther.20 (11), 2064–2075 (2012).
  • Wang J-Y , LingH, YangW, CraigieR. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. EMBO J.20 (24), 7333–7343 (2001).
  • Dyda F , HickmanAB, JenkinsTM, EngelmanA, CraigieR, DaviesD. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science266, 1981–1986 (2004).
  • Chen H , EngelmanA. Characterization of a replication-defective human immunodeficiency virus type 1 att site mutant that is blocked after the 3′ processing step of retroviral integration. J. Virol.74 (17), 8188–8193 (2000).
  • Long Y-Q , HuangS-X, ZawahirZet al. Design of cell-permeable stapled peptides as HIV-1 integrase inhibitors. J. Med. Chem.56 (13), 5601–5612 (2013).
  • Desjobert C , de SoultraitVR, FaureAet al. Identification by phage display selection of a short peptide able to inhibit only the strand transfer reaction catalyzed by human immunodeficiency virus type 1 integrase†. Biochemistry43 (41), 13097–13105 (2004).
  • Li H-Y , ZawahirZ, SongL-D, LongY-Q, NeamatiN. Sequence-based design and discovery of peptide inhibitors of HIV-1 integrase: insight into the binding mode of the enzyme. J. Med. Chem.49 (15), 4477–4486 (2006).
  • Freed EO . HIV-1 Gag proteins: diverse functions in the virus life cycle. Virology251 (1), 1–15 (1998).
  • Saad JS , MillerJ, TaiJ, KimA, GhanamRH, SummersMF. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc. Natl Acad. Sci. USA103 (30), 11364–11369 (2006).
  • Bennett RP , NelleTD, WillsJW. Functional chimeras of the Rous sarcoma virus and human immunodeficiency virus gag proteins. J. Virol.67 (11), 6487–6498 (1993).
  • Craven RC , Leure-duPreeAE, WeldonRA, WillsJW. Genetic analysis of the major homology region of the Rous sarcoma virus Gag protein. J. Virol.69 (7), 4213–4227 (1995).
  • Dawson L , YuX-F. The role of nucleocapsid of HIV-1 in virus assembly. Virology251 (1), 141–157 (1998).
  • Kenney SP , LochmannTL, SchmidCL, ParentLJ. Intermolecular Interactions between retroviral Gag proteins in the nucleus. J. Virol.82 (2), 683–691 (2008).
  • Wills JW , CravenRC. Form, function, and use of retroviral Gag proteins. AIDS5 (6) (1991).
  • Martinez-Hackert E , AnikeevaN, KalamsSA, WalkerBD, HendricksonWA, SykulevY. Structural basis for degenerate recognition of natural HIV peptide variants by cytotoxic lymphocytes. J. Biol. Chem.281 (29), 20205–20212 (2006).
  • Brander C , HartmanKE, TrochaAKet al. Lack of strong immune selection pressure by the immunodominant, HLA-A*0201-restricted cytotoxic T lymphocyte response in chronic human immunodeficiency virus-1 infection. J. Clin. Investig.101 (11), 2559–2566 (1998).
  • Goulder PJR , SewellAK, LallooDGet al. Patterns of immunodominance in HIV-1–specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-identical siblings with HLA-A*0201 are influenced by epitope mutation. J. Exp. Med.185 (8), 1423–1433 (1997).
  • Li F , Goila-GaurR, SalzwedelKet al. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc. Natl Acad. Sci. USA100 (23), 13555–13560 (2003).
  • Huang M , OrensteinJM, MartinMA, FreedEO. p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol.69 (11), 6810–6818 (1995).
  • Pornillos O , AlamSL, DavisDR, SundquistWI. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat. Struct. Mol. Biol.9 (11), 812–817 (2002).
  • Garrus JE , von SchwedlerUK, PornillosOWet al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell107 (1), 55–65 (2014).
  • VerPlank L , BouamrF, LaGrassaTJet al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag. Proc. Natl Acad. Sci. USA98 (14), 7724–7729 (2001).
  • Martin-Serrano J , ZangT, BieniaszPD. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med.7 (12), 1313–1319 (2001).
  • Zhan P , LiW, ChenH, LiuX. Targeting protein-protein interactions: a promising avenue of anti-HIV drug discovery. Curr. Med. Chem.17 (29), 3393–3409 (2010).
  • Freed EO . The HIV–TSG101 interface: recent advances in a budding field. Trends Microbiol.11 (2), 56–59 (2003).
  • Demirov DG , OnoA, OrensteinJM, FreedEO. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc. Natl Acad. Sci. USA99 (2), 955–960 (2002).
  • Kim S-E , LiuF, ImYJet al. Elucidation of new binding interactions with the human Tsg101 protein using modified HIV-1 Gag-p6 derived peptide ligands. ACS Med. Chem. Lett.2 (5), 337–341 (2011).
  • Liu F , StephenAG, WaheedAAet al. SAR by oxime-containing peptide libraries: application to Tsg101 ligand optimization. ChemBioChem9 (12), 2000–2004 (2008).
  • Liu F , StephenAG, FisherRJ, BurkeTRJr.. Protected aminooxyprolines for expedited library synthesis: application to Tsg101-directed proline–oxime containing peptides. Bioorg. Med. Chem. Lett.18 (3), 1096–1101 (2008).
  • Tavassoli A , LuQ, GamJ, PanH, BenkovicSJ, CohenSN. Inhibition of HIV budding by a genetically selected cyclic peptide targeting the Gag–TSG101 interaction. ACS Chem. Biol.3 (12), 757–764 (2008).
  • Solbak SMØ , RekstenTR, RöderRet al. HIV-1 p6–Another viral interaction partner to the host cellular protein cyclophilin A. Biochim. Biophys. Acta1824 (4), 667–678 (2012).
  • Hatziioannou T , Perez-CaballeroD, CowanS, BieniaszPD. Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells. J. Virol.79 (1), 176–183 (2005).
  • Franke EK , LubanJ. Inhibition of HIV-1 replication by cyclosporine A or related compounds correlates with the ability to disrupt the Gag–cyclophilin a interaction. Virology222 (1), 279–282 (1996).
  • Rana TM , JeangK-T. Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch. Biochem. Biophys.365 (2), 175–185 (1999).
  • Sodroski J , PatarcaR, RosenC, Wong-StaalF, HaseltineW. Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III. Science229 (4708), 74–77 (1985).
  • Bayer P , KraftM, EjchartA, WestendorpM, FrankR, RöschP. Structural studies of HIV-1 Tat protein. J. Mol. Biol.247 (4), 529–535 (1995).
  • Churcher MJ , LamontC, HamyFet al. High affinity binding of TAR RNA by the human immunodeficiency virus type-1 Tat protein requires base-pairs in the rna stem and amino acid residues flanking the basic region. J. Mol. Biol.230 (1), 90–110 (1993).
  • Long KS , CrothersDM. Interaction of Human Immunodeficiency Virus Type 1 Tat-derived peptides with TAR RNA. Biochemistry34 (27), 8885–8895 (1995).
  • Luo Y , MadoreSJ, ParslowTG, CullenBR, PeterlinBM. Functional analysis of interactions between Tat and the trans-activation response element of human immunodeficiency virus type 1 in cells. J. Virol.67 (9), 5617–5622 (1993).
  • Cullen BR . Regulation of HIV-1 gene expression. FASEB J.5 (10), 2361–2368 (1991).
  • Calnan BJ , BiancalanaS, HudsonD, FrankelAD. Analysis of Arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev.5 (2), 201–210 (1991).
  • Ensoli B , BuonaguroL, BarillariGet al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol.67 (1), 277–287 (1993).
  • Stevens M , De ClercqE, BalzariniJ. The regulation of HIV-1 transcription: molecular targets for chemotherapeutic intervention. Med. Res. Rev.26 (5), 595–625 (2006).
  • Weeks KM , AmpeC, SchultzSC, SteitzTA, CrothersDM. Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science249 (4974), 1281–1285 (1990).
  • Cordingley MG , LaFeminaRL, CallahanPLet al. Sequence-specific interaction of Tat protein and Tat peptides with the transactivation-responsive sequence element of human immunodeficiency virus type 1 in vitro. Proc. Natl Acad. Sci. USA87 (22), 8985–8989 (1990).
  • Gelman MA , RichterS, CaoH, UmezawaN, GellmanSH, RanaTM. Selective Binding of TAR RNA by a Tat-Derived β-Peptide. Org. Lett.5 (20), 3563–3565 (2003).
  • Wender PA , MitchellDJ, PattabiramanK, PelkeyET, SteinmanL, RothbardJB. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl Acad. Sci. USA97 (24), 13003–13008 (2000).
  • Wu C-H , ChenY-P, MouC-Y, ChengR. Altering the Tat-derived peptide bioactivity landscape by changing the Arginine side chain length. Amino Acids44 (2), 473–480 (2013).
  • Vogelstein B , LaneD, LevineAJ. Surfing the p53 network. Nature408 (6810), 307–310 (2000).
  • Jeffrey PD , GorinaS, PavletichNP. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science267 (5203), 1498–1502 (1995).
  • Clore GM , OmichinskiJG, SakaguchiKet al. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science265 (5170), 386–391 (1994).
  • Longo F , MarchettiMA, CastagnoliL, BattagliaPA, GiglianiF. A novel approach to protein-protein interaction: complex formation between the P53 tumor suppressor and the HIV Tat proteins. Biochem. Biophys. Res. Commun.206 (1), 326–334 (1995).
  • Ariumi Y , KaidaA, HatanakaM, ShimotohnoK. Functional cross-talk of HIV-1 Tat with p53 through Its C-terminal domain. Biochem. Biophys. Res. Commun.287 (2), 556–561 (2001).
  • Duan L , OzakiI, OakesJW, TaylorJP, KhaliliK, PomerantzRJ. The tumor suppressor protein p53 strongly alters human immunodeficiency virus type 1 replication. J. Virol.68 (7), 4302–4313 (1994).
  • Li CJ , WangC, FriedmanDJ, PardeeAB. Reciprocal modulations between p53 and Tat of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA92 (12), 5461–5464 (1995).
  • Cullen R . Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiol. Rev.56 (3), 375–394 (1992).
  • Gabizon R , MorM, RosenbergMMet al. Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 tat. Peptide Sci.90 (2), 105–116 (2008).
  • Fisher AG , EnsoliB, IvanoffLet al. The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science237 (4817), 888–893 (1987).
  • Gabuzda DH , LawrenceK, LanghoffEet al. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J. Virol.66 (11), 6489–6495 (1992).
  • Huthoff H , MalimMH. Cytidine deamination and resistance to retroviral infection: towards a structural understanding of the APOBEC proteins. Virology334 (2), 147–153 (2005).
  • Harris RS , BishopKN, SheehyAMet al. DNA deamination mediates innate immunity to retroviral infection. Cell113 (6), 803–809 (2003).
  • Mariani R , ChenD, SchröfelbauerBet al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell114 (1), 21–31 (2003).
  • Zhang H , YangB, PomerantzRJ, ZhangC, ArunachalamSC, GaoL. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature424 (6944), 94–98 (2003).
  • Sheehy AM , GaddisNC, MalimMH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med.9 (11), 1404–1407 (2003).
  • Stopak K , de NoronhaC, YonemotoW, GreeneWC. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol. Cell.12 (3), 591–601 (2003).
  • Bogerd HP , DoehleBP, WiegandHL, CullenBR. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc. Natl Acad. Sci. USA101 (11), 3770–3774 (2004).
  • Mangeat B , TurelliP, LiaoS, TronoD. A Single Amino Acid Determinant Governs the Species-specific Sensitivity of APOBEC3G to Vif Action. J. Biol. Chem.279 (15), 14481–14483 (2004).
  • He Z , ZhangW, ChenG, XuR, YuX-F. Characterization of Conserved Motifs in HIV-1 Vif Required for APOBEC3G and APOBEC3F Interaction. J. Mol. Biol.381 (4), 1000–1011 (2008).
  • Zhang L , SaadatmandJ, LiXet al. Function analysis of sequences in human APOBEC3G involved in Vif-mediated degradation. Virology370 (1), 113–121 (2008).
  • Mehle A , WilsonH, ZhangCet al. Identification of an APOBEC3G binding site in human immunodeficiency virus type 1 Vif and inhibitors of Vif-APOBEC3G binding. J. Virol.81 (23), 13235–13241 (2007).
  • Reingewertz TH , Britan-RosichE, Rotem-BambergerSet al. Mapping the Vif–A3G interaction using peptide arrays: a basis for anti-HIV lead peptides. Bioorg. Med. Chem.21 (12), 3523–3532 (2013).
  • Schröfelbauer B , ChenD, LandauNR. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc. Natl Acad. Sci. USA101 (11), 3927–3932 (2004).
  • Donahue JP , VetterML, MukhtarNA, D'AquilaRT. The HIV-1 Vif PPLP motif is necessary for human APOBEC3G binding and degradation. Virology377 (1), 49–53 (2008).
  • Dang Y , WangX, YorkIA, ZhengY-H. Identification of a critical T(Q/D/E)x5ADx2(I/L) motif from primate lentivirus Vif proteins that regulate APOBEC3G and APOBEC3F neutralizing activity. J. Virol.84 (17), 8561–8570 (2010).
  • De Noronha CM , ShermanMP, LinHWet al. Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science294 (5544), 1105–1108 (2001).
  • Levy DN , FernandesLS, WilliamsW V, WeinerDB. Induction of cell differentiation by human immunodeficiency virus 1 Vpr. Cell72 (4), 541–550 (1993).
  • Kogan M , RappaportJ. HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology8 (1), 25 (2011).
  • Emerman M . HIV-1, Vpr and the cell cycle. Curr. Biol.6 (9), 1096–1103 (1996).
  • Ardon O , ZimmermanES, AndersenJL, DeHartJL, BlackettJ, PlanellesV. Induction of G2 arrest and binding to cyclophilin A are independent phenotypes of human immunodeficiency virus type 1 Vpr. J. Virol.80 (8), 3694–3700 (2006).
  • Solbak S , RekstenT, WrayVet al. The intriguing cyclophilin A-HIV-1 Vpr interaction: prolyl cis/trans isomerisation catalysis and specific binding. BMC Struct. Biol.10 (1), 31 (2010).
  • Di Marzio P , ChoeS, EbrightM, KnoblauchR, LandauNR. Mutational analysis of cell cycle arrest, nuclear localization and virion packaging of human immunodeficiency virus type 1 Vpr. J. Virol.69 (12), 7909–7916 (1995).
  • Gaynor EM , ChenISY. Analysis of apoptosis induced by HIV-1 Vpr and examination of the possible role of the hHR23A protein. Expt. Cell Res.267 (2), 243–257 (2001).
  • Franke EK , YuanHEH, LubanJ. Specific incorporation of cyclophilin A into HIV-1 virions. Nature372 (6504), 359–362 (1994).
  • Solbak SMØ , WrayV, HorvliOet al. The host-pathogen interaction of human cyclophilin A and HIV-1 Vpr requires specific N-terminal and novel C-terminal domains. BMC Struct. Biol.11, 49 (2011).
  • Luo Z , ButcherDJ, MuraliR, SrinivasanA, HuangZ. Structural studies of synthetic peptide fragments derived from the HIV-1 Vpr protein. Biochem. Biophys. Res. Commun.244 (3), 732–736 (1998).
  • BouHamdan M , XueY, BaudatYet al. Diversity of HIV-1 Vpr interactions involves usage of the WXXF Motif of host cell proteins. J. Biol. Chem.273 (14), 8009–8016 (1998).
  • Debouck C . The HIV-1 protease as a therapeutic target for AIDS. AIDs Res. Hum. Retrovirus8 (2), 153–164 (1992).
  • Smith DB , JohnsonKS. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene67 (1), 31–40 (1988).
  • Sabbah EN , DruillennecS, MorelletN, BouazizS, KroemerG, RoquesBP. Interaction between the HIV-1 protein Vpr and the adenine nucleotide translocator. Chem. Biol. Drug. Des.67 (2), 145–154 (2006).
  • Jacotot E , FerriKF, El HamelCet al. Control of Mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein R and Bcl-2. J. Expt. Med.193 (4), 509–520 (2001).
  • Borgne-Sanchez A , DupontS, LangonneAet al. Targeted Vpr-derived peptides reach mitochondria to induce apoptosis of [alpha]V[beta]3-expressing endothelial cells. Cell Death Differ.14 (3), 422–435 (2006).
  • Kattenbeck B , RohrhoferA, NiedrigM, WolfH, ModrowS. Defined amino acids in the gag proteins of human immunodeficiency virus type 1 are functionally active during virus assembly. Intervirology39 (1–2), 32–39 (1996).
  • Gallina A , MantoanG, RindiG, MilanesiG. Influence of MA Internal sequences, but not of the myristylated N-terminus sequence, on the budding site of HIV-1 Gag protein. Biochem. Biophys. Res. Commun.204 (3), 1031–1038 (1994).
  • Bukrinsky MI , HaggertyS, DempseyMPet al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature365 (6447), 666–669 (1993).
  • Dorfman T , MammanoF, HaseltineWA, GöttlingerHG. Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J. Virol.68 (3), 1689–1696 (1994).
  • Ota A , Tanaka-TayaK, UedaS. Cross-reactivity of anti-HIV-1-p17-derivative peptide (P30–52) antibody to Env V3 peptide. Hybridoma18 (2), 149–157 (1999).
  • Ota A , LiuX, FujioH, SakatoNobuo, UedaS. Random expression of human immunodeficiency virus-1 (HIV-1) pl7 (epitopes) on the surface of the HIV-1-infected cell. Hybridoma17 (1), 73–75 (1998).
  • Kohl NE , EminiEA, SchleifWAet al. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl Acad. Sci. USA85 (13), 4686–4690 (1988).
  • Liu B , DaiR, TianC-J, DawsonL, GorelickR, YuX-F. Interaction of the human immunodeficiency virus type 1 nucleocapsid with actin. J. Virol.73 (4), 2901–2908 (1999).
  • Luciw PA . Human immunodeficiency viruses and their replication. In : Field Virology (3rd Edition). FieldsBN, KnipeDM, HowelyPM, ( Eds.), Philadelphia, PA, USA, Lippincott-Raven Publishers; 18 (1996).
  • Misumi S , KudoA, AzumaR, TomonagaM, FuruishiK, ShojiS. The p2gagPeptide, AEAMSQVTNTATIM, processed from HIV-1 Pr55 Gag was found to be a suicide inhibitor of HIV-1 protease. Biochem. Biophys. Res. Commun.241 (2), 275–280 (1997).
  • Kotler M , SimmM, ZhaoYSet al. Human immunodeficiency virus type 1 (HIV-1) protein Vif inhibits the activity of HIV-1 protease in bacteria and in vitro. J. Virol.71 (8), 5774–5781 (1997).
  • Karageorgos L , LiP, BurrellC. Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Res. Hum. Retroviruses9 (9), 817–823 (1993).
  • Potash MJ , BentsmanG, MuirT, KrachmarovC, SovaP, VolskyDJ. Peptide inhibitors of HIV-1 protease and viral infection of peripheral blood lymphocytes based on HIV-1 Vif. Proc. Natl Acad. Sci. USA95 (23), 13865–13868 (1998).
  • Baraz L , HutoranM, BlumenzweigIet al. Human immunodeficiency virus type 1 Vif binds the viral protease by interaction with its N-terminal region. J. Gen. Virol.83 (9), 2225–2230 (2002).
  • Friedler A , BlumenzweigI, BarazL, SteinitzM, KotlerM, GilonC. Peptides derived from HIV-1 vif: a non-substrate based novel type of HIV-1 protease inhibitors. J. Mol. Biol.287 (1), 93–101 (1999).
  • Hutoran M , BritanE, BarazL, BlumenzweigI, SteinitzM, KotlerM. Abrogation of Vif function by peptide derived from the N-terminal region of the human immunodeficiency virus type 1 (HIV-1) protease. Virology330 (1), 261–270 (2004).
  • Gallay P , SwinglerS, SongJ, BushmanF, TronoD. HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell83 (4), 569–576 (1995).
  • Oz Gleenberg I , AvidanO, GoldgurY, HerschhornA, HiziA. Peptides Derived from the Reverse transcriptase of human immunodeficiency virus type 1 as novel inhibitors of the viral integrase. J. Biol. Chem.280 (23), 21987–21996 (2005).
  • Bischerour J , TaucP, LehH, RocquignyH de, RoquesB, MouscadetJ. The (52–96) C-terminal domain of Vpr stimulates HIV-1 IN-mediated homologous strand transfer of mini-viral DNA. Nucleic Acids Res.31 (10), 2694–2702 (2003).
  • Catherine S. Adamson EOF . Anti-HIV-1 therapeutics: from FDA-approved Drugs to Hypothetical Future Targets. Mol. Interv.9 (2), 70–74 (2009).
  • Pang W , TamS-C, ZhengY-T. Current Peptide HIV Type-1 Fusion Inhibitors. Antivir. Chem. Chemother.20 (1), 1–18 (2009).
  • Park M , WetzlerM, JardetzkyTS, BarronAE. A readily applicable strategy to convert peptides to peptoid-based therapeutics. PLoS ONE8 (3), e58874 (2013).
  • Henchey LK , JochimAL, AroraPS. Contemporary strategies for the stabilization of peptides in the α-helical conformation. Curr. Opin. Chem. Biol.12 (6), 692–697 (2008).
  • Kilby JM , HopkinsS, VenettaTMet al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat. Med.4 (11), 1302–1307 (1998).
  • White CJ & YudinAK. Contemporary strategies for peptide macrocyclization. Nat. Chem.3, 509–524 (2011).
  • Kazmierski WM , KenakinTP, GudmundssonKS. Peptide, peptidomimetic and small-molecule drug discovery targeting HIV-1 host-cell attachment and entry through gp120, gp41, CCR5 and CXCR4†. Chem. Biol. Drug. Des.67 (1), 13–26 (2006).
  • Cai L , JiangS. Development of peptide and small-molecule HIV-1 fusion inhibitors that target gp41. ChemMedChem5 (11), 1813–1824 (2010).
  • Brunton LL , LazoJS, ParkerK. Goodman and Gilmans's The Pharmacological Basis of Therapeutics (11th Edition). McGraw-Hill, USA (2006).
  • Flexner C . HIV drug development: the next 25 years. Nat. Rev. Drug Discov.6 (12), 959–966 (2007).
  • Wlodawer A . Rational approach to AIDS drug design through structural biology. Annu. Rev. Med.53 (1), 595–614 (2002).
  • Liu J , BartesaghiA, BorgniaMJ, SapiroG, SubramaniamS. Molecular architecture of native HIV-1 gp120 trimers. Nature455 (7209), 109–113 (2008).
  • Dwyer JJ , WilsonKL, MartinKet al. Design of an engineered N-terminal HIV-1 gp41 trimer with enhanced stability and potency. Protein Sci.17 (4), 633–643 (2008).
  • Das K , MartinezSE, BaumanJD, ArnoldE. HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nat. Struct. Mol. Biol.19 (2), 253–259 (2012).
  • Kitamura S , OdeH, NakashimaMet al. The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat. Struct. Mol. Biol.19 (10), 1005–1010 (2012).
  • Shandilya SMD , NalamMNL, NalivaikaEAet al. Crystal Structure of the APOBEC3G Catalytic Domain Reveals Potential Oligomerization Interfaces. Structure18 (1), 28–38 (2015).
  • Wielens J , HeadeySJ, JeevarajahDet al. Crystal structure of the HIV-1 integrase core domain in complex with sucrose reveals details of an allosteric inhibitory binding site. FEBS Lett.584 (8), 1455–1462 (2015).
  • Im YJ , KuoL, RenXet al. Crystallographic and functional analysis of the ESCRT-I/HIV-1 Gag PTAP interaction. Structure18 (11), 1536–1547 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.