93,593
Views
1
CrossRef citations to date
0
Altmetric
Review

Biofilm Formation Mechanisms and Targets for Developing Antibiofilm Agents

, , , , &
Pages 493-512 | Published online: 15 Apr 2015

References

  • Henrici AT . Studies of freshwater bacteria: I. A direct microscopic technique. J. Bacteriol.25 (3), 277–287 (1933).
  • Heukelekian H , HellerA. Relation between food concentration and surface for bacterial growth. J. Bacteriol.40 (4), 547–558 (1940).
  • Hoiby N , FlensborgE, BeckB, FriisB, JacobsenS, JacobsenL. Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Scand. J. Respir. Dis.58 (2), 65–79 (1977).
  • Costerton JW , GeeseyGG, ChengKJ. How bacteria stick. Sci. Am.238 (1), 86–95 (1978).
  • Deligianni E , PattisonS, BerrarDet al. Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol.10, 38 (2010).
  • Ludecke C , JandtKD, SiegismundDet al. Reproducible biofilm cultivation of chemostat-grown Escherichia coli and investigation of bacterial adhesion on biomaterials using a non-constant-depth film fermenter. PLoS One9 (1), e84837 (2014).
  • Thurlow LR , HankeML, FritzTet al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol.186 (11), 6585–6596 (2011).
  • Pammi M , LiangR, HicksJM, BarrishJ, VersalovicJ. Farnesol decreases biofilms of Staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin. Pediatr. Res.70 (6), 578–583 (2011).
  • Annous BA , FratamicoPM, SmithJL. Scientific status summary. J. Food Sci.74 (1), R24–R37 (2009).
  • Metwalli KH , KhanSA, KromBP, Jabra-RizkMA. Streptococcus mutans candida albicans and the human mouth: a sticky situation. PLoS Pathog.9 (10), e1003616 (2013).
  • Flemming HC , NeuTR, WozniakDJ. The EPS matrix: the “house of biofilm cells”. J. Bacteriol.189 (22), 7945–7947 (2007).
  • Zhang X , BishopPL, KupferleMJ. Measurement of polysaccharides and proteins in biofilm extracellular polymers. Water Sci. Technol.37 (45), 345–348 (1998).
  • Nwodo UU , GreenE, OkohAI. Bacterial exopolysaccharides: functionality and prospects. Int. J. Mol. Sci.13 (11), 14002–14015 (2012).
  • Dawson LF , ValienteE, Faulds-PainA, DonahueEH, WrenBW. Characterisation of clostridium difficile biofilm formation, a role for Spo0A. PLoS One7 (12), e50527 (2012).
  • Bales PM , RenkeEM, MaySL, ShenY, NelsonDC. Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLoS One8 (6), e67950 (2013).
  • Prigent-Combaret C , VidalO, DorelC, LejeuneP. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J. Bacteriol.181 (19), 5993–6002 (1999).
  • Davies DG , GeeseyGG. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl. Environ. Microbiol.61 (3), 860–867 (1995).
  • Grant WD , SutherlandIW, WilkinsonJF. Exopolysaccharide colanic acid and its occurrence in the Enterobacteriaceae. J. Bacteriol.100 (3), 1187–1193 (1969).
  • Stevenson G , AndrianopoulosK, HobbsM, ReevesPR. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J. Bacteriol.178 (16), 4885–4893 (1996).
  • Reid AN , WhitfieldC. Functional analysis of conserved gene products involved in assembly of Escherichia coli capsules and exopolysaccharides: evidence for molecular recognition between Wza and Wzc for colanic acid biosynthesis. J. Bacteriol.187 (15), 5470–5481 (2005).
  • Danese PN , PrattLA, KolterR. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J. Bacteriol.182 (12), 3593–3596 (2000).
  • Friedman L , KolterR. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol.51 (3), 675–690 (2004).
  • Friedman L , KolterR. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol.186 (14), 4457–4465 (2004).
  • Jackson KD , StarkeyM, KremerS, ParsekMR, WozniakDJ. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J. Bacteriol.186 (14), 4466–4475 (2004).
  • May TB , ShinabargerD, MaharajRet al. Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin. Microbiol. Rev.4 (2), 191–206 (1991).
  • Hodges NA , GordonCA. Protection of Pseudomonas aeruginosa against ciprofloxacin and beta-lactams by homologous alginate. Antimicrob. Agents Chemother.35 (11), 2450–2452 (1991).
  • Simpson JA , SmithSE, DeanRT. Alginate inhibition of the uptake of Pseudomonas aeruginosa by macrophages. J. Gen. Microbiol.134 (1), 29–36 (1988).
  • Ma L , WangJ, WangSet al. Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated. Environ. Microbiol.14 (8), 1995–2005 (2012).
  • Coyne MJ , RussellKS, CoyleCL, GoldbergJB. The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J. Bacteriol.176 (12), 3500–3507 (1994).
  • Colvin KM , IrieY, TartCSet al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol.14 (8), 1913–1928 (2012).
  • Franklin MJ , NivensDE, WeadgeJT, HowellPL. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front. Microbiol.2, 167 (2011).
  • Gacesa P . Bacterial alginate biosynthesis – recent progress and future prospects. Microbiology144 (5), 1133–1143 (1998).
  • Stokke BT , DragetKI, Smidsr⊘dO, YuguchiY, UrakawaH, KajiwaraK. Small-angle X-ray scattering and rheological characterization of alginate Gels. 1. Ca-Alginate Gels. Macromolecules33 (5), 1853–1863 (2000).
  • Mack D , FischerW, KrokotschAet al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol.178 (1), 175–183 (1996).
  • Cue DR , LeiMG, LeeC. Genetic regulation of the intercellular adhesion locus in staphylococci. Front. Cell. Infect. Microbiol.2, 38 (2012).
  • Stanley NR , LazazzeraBA. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-dl-glutamic acid production and biofilm formation. Mol. Microbiol.57 (4), 1143–1158 (2005).
  • Branda SS , ChuF, KearnsDB, LosickR, KolterR. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol.59 (4), 1229–1238 (2006).
  • Fr⊘lund B , PalmgrenR, KeidingK, NielsenPH. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res.30 (8), 1749–1758 (1996).
  • Lynch DJ , FountainTL, MazurkiewiczJE, BanasJA. Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture. FEMS Microbiol. Lett.268 (2), 158–165 (2007).
  • Dueholm MS , S⊘ndergaardMT, NilssonMet al. Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation. Microbiologyopen2 (3), 365–382 (2013).
  • Romero D , AguilarC, LosickR, KolterR. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl. Acad. Sci. USA107 (5), 2230–2234 (2010).
  • Cucarella C , SolanoC, ValleJ, AmorenaB, LasaI, PenadésJR. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol.183 (9), 2888–2896 (2001).
  • Toledo-Arana A , ValleJ, SolanoCet al. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol.67 (10), 4538–4545 (2001).
  • Lasa I , PenadésJR. Bap: a family of surface proteins involved in biofilm formation. Res. Microbiol.157 (2), 99–107 (2006).
  • Mora P , RosconiF, Franco FraguasL, Castro-Sowinski S. Azospirillum brasilense Sp7 produces an outer-membrane lectin that specifically binds to surface-exposed extracellular polysaccharide produced by the bacterium. Arch. Microbiol.189 (5), 519–524 (2008).
  • Diggle SP , StaceyRE, DoddC, CámaraM, WilliamsP, WinzerK. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol.8 (6), 1095–1104 (2006).
  • Tielker D , HackerS, LorisRet al. Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology151 (5), 1313–1323 (2005).
  • Zhang X , BishopPL. Biodegradability of biofilm extracellular polymeric substances. Chemosphere50 (1), 63–69 (2003).
  • Kaplan JB , VelliyagounderK, RagunathCet al. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J. Bacteriol.186 (24), 8213–8220 (2004).
  • Whitchurch CB , Tolker-NielsenT, RagasPC, MattickJS. Extracellular DNA required for bacterial biofilm formation. Science295 (5559), 1487 (2002).
  • Hamilton HL , DomínguezNM, SchwartzKJ, HackettKT, DillardJP. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol. Microbiol.55 (6), 1704–1721 (2005).
  • Das T , SharmaPK, BusscherHJ, van der MeiHC, KromBP. Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl. Environ. Microbiol.76 (10), 3405–3408 (2010).
  • Gloag ES , TurnbullL, HuangAet al. Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc. Natl. Acad. Sci. USA110 (28), 11541–11546 (2013).
  • Lewenza S . Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Front. Microbiol.4, 21 (2013).
  • Mulcahy H , Charron-MazenodL, LewenzaS. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog.4 (11), e1000213 (2008).
  • Johnson L , HorsmanSR, Charron-MazenodLet al. Extracellular DNA-induced antimicrobial peptide resistance in Salmonella enterica serovar Typhimurium. BMC Microbiol.13, 115 (2013).
  • Doroshenko N , TsengBS, HowlinRPet al. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms pre-exposed to sub-inhibitory concentrations of vancomycin. Antimicrob. Agents Chemother.58 (12), 7273–7282 (2014).
  • Otto M . Staphylococcus epidermidis Pathogenesis. Methods Mol. Biol.1106, 17–31 (2014).
  • Barnes AMT , BalleringKS, LeibmanRS, WellsCL, DunnyGM. Enterococcus faecalis produces abundant extracellular structures containing DNA in the absence of cell lysis during early biofilm formation. MBio.3 (4), e00193–12 (2012).
  • Jefferson KK . What drives bacteria to produce a biofilm?FEMS Microbiol. Lett.236 (2), 163–173 (2004).
  • Rasmussen TB , GivskovM. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol.296 (23), 149–161 (2006).
  • Hausner M , WuertzS. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl. Environ. Microbiol.65 (8), 3710–3713 (1999).
  • Palmer J , FlintS, BrooksJ. Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol.34 (9), 577–588 (2007).
  • Renner LD , WeibelDB. Physicochemical regulation of biofilm formation. MRS Bull.36 (5), 347–355 (2011).
  • Sutherland I . Biofilm exopolysaccharides: a strong and sticky framework. Microbiology147 (1), 3–9 (2001).
  • O'Toole GA , KolterR. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol.30 (2), 295–304 (1998).
  • Otto M . Staphylococcal biofilms. Curr. Top. Microbiol. Immunol.207–228 (2008).
  • Heilmann C , HussainM, PetersG, GötzF. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol.24 (5), 1013–1024 (1997).
  • Davies DG , ChakrabartyAM, GeeseyGG. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl. Environ. Microbiol.59 (4), 1181–1186 (1993).
  • Garrett ES , PerlegasD, WozniakDJ. Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J. Bacteriol.181 (23), 7401–7404 (1999).
  • Hall MR , McGillicuddyE, KaplanLJ. Biofilm: basic principles, pathophysiology, and implications for clinicians. Surg. Infect. (Larchmt.)15 (1), 1–7 (2014).
  • Fux CA , CostertonJW, StewartPS, StoodleyP. Survival strategies of infectious biofilms. Trends Microbiol.13 (1), 34–40 (2005).
  • Davies D . Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov.2 (2), 114–122 (2003).
  • Lyczak JB , CannonCL, PierGB. Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev.15 (2), 194–222 (2002).
  • Pedersen SS , KochC, H⊘ibyN, RosendalK. An epidemic spread of multiresistant Pseudomonas aeruginosa in a cystic fibrosis centre. J. Antimicrob. Chemother.17 (4), 505–516 (1986).
  • Jones AM , GovanJR, DohertyCJet al. Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis clinic. Lancet358 (9281), 557–558 (2001).
  • Römling U , FiedlerB, BosshammerJet al. Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J. Infect. Dis.170 (6), 1616–1621 (1994).
  • Costerton JW , StewartPS, GreenbergEP. Bacterial biofilms: a common cause of persistent infections. Science284 (5418), 1318–1322 (1999).
  • Moreau-Marquis S , StantonBA, O'TooleGA. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm. Pharmacol. Ther.21 (4), 595–599 (2008).
  • Pedersen SS , H⊘ibyN, EspersenF, KochC. Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax47 (1), 6–13 (1992).
  • Hojo K , NagaokaS, OhshimaT, MaedaN. Bacterial interactions in dental biofilm development. J. Dent. Res.88 (11), 982–990 (2009).
  • Marsh PD . Dental plaque as a microbial biofilm. Caries Res.38 (3), 204–211 (2004).
  • Marsh PD . Dental plaque as a biofilm and a microbial community – implications for health and disease. BMC Oral Health6 (Suppl 1), 14 (2006).
  • Zaura E , KeijserB, HuseS, CrielaardW. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol.9 (1), 259 (2009).
  • Li J , HelmerhorstEJ, LeoneCWet al. Identification of early microbial colonizers in human dental biofilm. J. Appl. Microbiol.97 (6), 1311–1318 (2004).
  • Marquis RE . Oxygen metabolism, oxidative stress and acid–base physiology of dental plaque biofilms. J. Ind. Microbiol.15 (3), 198–207 (1995).
  • Sbordone L , BortolaiaC. Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease. Clin. Oral Investig.7 (4), 181–188 (2003).
  • Dige I , NilssonH, KilianM, NyvadB. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur. J. Oral Sci.115 (6), 459–467 (2007).
  • Dige I , RaarupMK, NyengaardJR, KilianM, NyvadB. Actinomyces naeslundii in initial dental biofilm formation. Microbiology155 (7), 2116–2126 (2009).
  • Kolenbrander PE , PalmerRJJr, PeriasamyS, JakubovicsNS. Oral multispecies biofilm development and the key role of cell–cell distance. Nat. Rev. Micro.8 (7), 471–480 (2010).
  • Hardie KR , HeurlierK. Establishing bacterial communities by ‘word of mouth’: LuxS and autoinducer 2 in biofilm development. Nat. Rev. Micro.6 (8), 635–643 (2008).
  • Bassler BL , GreenbergEP, StevensAM. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol.179 (12), 4043–4045 (1997).
  • James GA , SwoggerE, WolcottRet al. Biofilms in chronic wounds. Wound Repair Regen.16 (1), 37–44 (2008).
  • Tenke P , KovacsB, JäckelM, NagyE. The role of biofilm infection in urology. World J. Urol.24 (1), 13–20 (2006).
  • Jacobsen SM , SticklerDJ, MobleyHL, ShirtliffME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev.21 (1), 26–59 (2008).
  • Matthews PC , BerendtAR, McNallyMA, ByrenI. Diagnosis and management of prosthetic joint infection. BMJ338, b1773 (2009).
  • Trampuz A , ZimmerliW. Prosthetic joint infections: update in diagnosis and treatment. Swiss Med. Wkly.135 (1718), 243–251 (2005).
  • Khardori N , YassienM. Biofilms in device-related infections. J. Ind. Microbiol.15 (3), 141–147 (1995).
  • Costerton JW , LewandowskiZ, CaldwellDE, KorberDR, Lappin-ScottHM. Microbial Biofilms. Annu. Rev. Microbiol.49 (1), 711–745 (1995).
  • Nickel JC , RuseskaI, WrightJB, CostertonJW. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother.27 (4), 619–624 (1985).
  • Luppens SB , ReijMW, van der HeijdenRW, RomboutsFM, AbeeT. Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl. Environ. Microbiol.68 (9), 4194–4200 (2002).
  • Suci PA , MittelmanMW, YuFP, GeeseyGG. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother.38 (9), 2125–2133 (1994).
  • Anderl JN , FranklinMJ, StewartPS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother.44 (7), 1818–1824 (2000).
  • Savage VJ , ChopraI, O'NeillAJ. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother.57 (4), 1968–1970 (2013).
  • Ashby MJ , NealeJE, KnottSJ, CritchleyIA. Effect of antibiotics on non-growing planktonic cells and biofilms of Escherichia coli. J. Antimicrob. Chemother.33 (3), 443–452 (1994).
  • Lewis K . Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol.5 (1), 48–56 (2007).
  • Keren I , ShahD, SpoeringA, KaldaluN, LewisK. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol.186 (24), 8172–8180 (2004).
  • Zhang L , MahTF. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J. Bacteriol.190 (13), 4447–4452 (2008).
  • Leid JG , WillsonCJ, ShirtliffME, HassettDJ, ParsekMR, JeffersAK. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J. Immunol.175 (11), 7512–7518 (2005).
  • Lyon GJ , MuirTW. Chemical signaling among bacteria and its inhibition. Chem. Biol.10 (11), 1007–1021 (2003).
  • West SA , WinzerK, GardnerA, DiggleSP. Quorum sensing and the confusion about diffusion. Trends Microbiol.20 (12), 586–594 (2012).
  • Camilli A , BasslerBL. Bacterial small-molecule signaling pathways. Science311 (5764), 1113–1116 (2006).
  • Rezzonico F , DuffyB. Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria. BMC Microbiol.8 (1), 154 (2008).
  • Miller MB , BasslerBL. Quorum sensing in bacteria. Annu. Rev. Microbiol.55 (1), 165–199 (2001).
  • Romeo T , IrieY, ParsekMR. Quorum sensing and microbial biofilms. Curr. Top. Microbiol. Immunol. 67–84 (2008).
  • Allesen-Holm M , BarkenKB, YangLet al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol.59 (4), 1114–1128 (2006).
  • Sakuragi Y , KolterR. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J. Bacteriol.189 (14), 5383–5386 (2007).
  • Boles BR , HorswillAR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog.4 (4), e1000052 (2008).
  • Novick RP , GeisingerE. Quorum sensing in staphylococci. Annu. Rev. Genet.42, 541–564 (2008).
  • López D , FischbachMA, ChuF, LosickR, KolterR. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc. Natl Acad. Sci. USA106 (1), 280–285 (2009).
  • Weinhouse H , SapirS, AmikamDet al. c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBS Lett.416 (2), 207–211 (1997).
  • Ross P , MayerR, WeinhouseHet al. The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. J. Biol. Chem.265 (31), 18933–18943 (1990).
  • Kalia D , MereyG, NakayamaSet al. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem. Soc. Rev.42 (1), 305–341 (2013).
  • Ross P , WeinhouseH, AloniYet al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature325 (6101), 279–281 (1987).
  • Ryjenkov DA , TarutinaM, MoskvinOV, GomelskyM. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J. Bacteriol.187 (5), 1792–1798 (2005).
  • Paul R , WeiserS, AmiotNCet al. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev.18 (6), 715–727 (2004).
  • Tischler AD , CamilliA. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect. Immun.73 (9), 5873–5882 (2005).
  • Boyd CD , O'TooleGA. Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems. Annu. Rev. Cell Dev. Biol.28 (1), 439–462 (2012).
  • Newell PD , MondsRD, O'TooleGA. LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc. Natl Acad. Sci. USA106 (9), 3461–3466 (2009).
  • Newell PD , BoydCD, SondermannH, O'TooleGA. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol.9 (2), e1000587 (2011).
  • Monds RD , NewellPD, GrossRH, O'TooleGA. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0–1 biofilm formation by controlling secretion of the adhesin LapA. Mol. Microbiol.63 (3), 656–679 (2007).
  • Ryjenkov DA , SimmR, RömlingU, GomelskyM. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem.281 (41), 30310–30314 (2006).
  • Boehm A , KaiserM, LiHet al. Second messenger-mediated adjustment of bacterial swimming velocity. Cell141 (1), 107–116 (2010).
  • Paul K , NietoV, CarlquistWC, BlairDF, HarsheyRM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol. Cell38 (1), 128–139 (2010).
  • Martinez-Wilson HF , TamayoR, TischlerAD, LazinskiDW, CamilliA. The Vibrio cholerae hybrid sensor kinase VieS contributes to motility and biofilm regulation by altering the cyclic diguanylate level. J. Bacteriol.190 (19), 6439–6447 (2008).
  • Tamayo R , TischlerAD, CamilliA. TheEAL Domain protein VieA is a cyclic diguanylate phosphodiesterase. J. Biol. Chem.280 (39), 33324–33330 (2005).
  • Simm R , MorrM, KaderA, NimtzM, RömlingU. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol.53 (4), 1123–1134 (2004).
  • Kirillina O , FetherstonJD, BobrovAG, AbneyJ, PerryRD. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol. Microbiol.54 (1), 75–88 (2004).
  • Wilksch JJ , YangJ, ClementsAet al. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog.7 (8), e1002204 (2011).
  • Carlson HK , VanceRE, MarlettaMA. H-NOX regulation of c-di-GMP metabolism and biofilm formation in Legionella pneumophila. Mol. Microbiol.77 (4), 930–942 (2010).
  • Nakhamchik A , WildeC, Rowe-MagnusDA. Cyclic-di-GMP regulates extracellular polysaccharide production, biofilm formation, and rugose colony development by Vibrio vulnificus. Appl. Environ. Microbiol.74 (13), 4199–4209 (2008).
  • Romeo T , GongM, LiuMY, Brun-ZinkernagelAM. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J. Bacteriol.175 (15), 4744–4755 (1993).
  • Liu MY , GuiG, WeiBet al. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J. Biol. Chem.272 (28), 17502–17510 (1997).
  • Jackson DW , SuzukiK, OakfordL, SimeckaJW, HartME, RomeoT. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J. Bacteriol.184 (1), 290–301 (2002).
  • Ventre I , GoodmanAL, Vallet-GelyIet al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc. Natl Acad. Sci. USA103 (1), 171–176 (2006).
  • Kay E , HumairB, DénervaudVet al. Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J. Bacteriol.188 (16), 6026–6033 (2006).
  • Jimenez PN , KochG, ThompsonJA, XavierKB, CoolRH, QuaxWJ. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev.76 (1), 46–65 (2012).
  • Babitzke P , RomeoT. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr. Opin. Microbiol.10 (2), 156–163 (2007).
  • Ogasawara H , YamamotoK, IshihamaA. Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J. Bacteriol.193 (10), 2587–2597 (2011).
  • Mika F , HenggeR. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. RNA Biol.11 (5), 494–507 (2014).
  • Chambers JR , SauerK. Small RNAs and their role in biofilm formation. Trends Microbiol.21 (1), 39–49 (2013).
  • Dalton T , DowdSE, WolcottRDet al. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS One6 (11), e27317 (2011).
  • Hoffmann N , RasmussenTB, JensenPØet al. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect. Immun.73 (4), 2504–2514 (2005).
  • Buret A , WardKH, OlsonME, CostertonJW. An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. J. Biomed. Mater. Res.25 (7), 865–874 (1991).
  • Chauhan A , LebeauxD, DecanteBet al. A rat model of central venous catheter to study establishment of long-term bacterial biofilm and related acute and chronic infections. PLoS One7 (5), e37281 (2012).
  • Cole SJ , RecordsAR, OrrMW, LindenSB, LeeVT. Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide independent biofilms. Infect. Immun.82 (5), 2048–2058 (2014).
  • Watters C , DeLeonK, TrivediUet al. Pseudomonas aeruginosa biofilms perturb wound resolution and antibiotic tolerance in diabetic mice. Med. Microbiol. Immunol.202 (2), 131–141 (2013).
  • Bjarnsholt T , JensenPØ, FiandacaMJet al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol.44 (6), 547–558 (2009).