616
Views
0
CrossRef citations to date
0
Altmetric
Review

N-Heterocyclic Carbene Metal Complexes as Bio-Organometallic Antimicrobial and Anticancer Drugs

, , , , , & show all
Pages 1305-1333 | Published online: 06 Jul 2015

References

  • Fish RH , JaouenG. Bioorganometallic chemistry: structural diversity of organometallic complexes with bioligands and molecular recognition studies of several supramolecular hosts with biomolecules, alkali-metal ions, and organometallic pharmaceuticals. Organometallics22 (11), 2166–2177 (2003).
  • Schatzschneider U , Metzler-NolteN. New emerging principles in medicinal organometallic chemistry. Angew. Chem. Int. Ed.45, 1504–1507 (2006).
  • Wanzlick HW , KleinerHJ. Nucleophile carben-chemie darstellung des bis-[1.3-diphenyl-imidazolidinyliden-(2)]. Angew. Chem.73 (14), 493 (1961).
  • Wanzlick HW . Aspects of nucleophilic carbene chemistry. Angew. Chem. Int. Ed. Engl.1 (2), 75–80 (1962).
  • Wanzlick HW , EsserF, KleinerHJ. Nucleophile carben-chemie, III. neue verbindungen vom typ des bis-[1.3-diphenyl-imidazolidinylidens-(2)]. Chem. Ber.96 (5), 1208–1212 (1963).
  • Öfele K . 1,3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom ein neuer übergangsmetall-carben-komplex. J. Organomet. Chem.12 (3), P42–P43 (1968).
  • Wanzlick HW , SchönherrHJ. Direct synthesis of a mercury salt-carbene complex. Angew. Chem. Int. Ed. Engl.7 (2), 141–142 (1968).
  • Lappert MF . The coordination chemistry of bivalent group IV donors: nucleophilic-carbene and dialkylstannylene complexes. J. Organomet. Chem.100 (1), 139–159 (1975).
  • Hitchcock PB , LappertMF, TerrerosP. Synthesis of homoleptic tris(organo-chelate)iridium(III) complexes by spontaneous ortho-metallation of electronrich olefin-derived N,N′-diarylcarbene ligands and the X-ray structures of fac-[Ir{CN(C6H4Me-p) (CH2)2NC6H3Me-p}3] and mer-Ir{CN(C6H4Me-p)(CH2)2NC6H3Me-p}2{CN(C6H4Me-p)(CH2)2NC6H4Me-p}Cl (a product of HCl cleavage). J. Organomet. Chem.239 (2), C26–C30 (1982).
  • Lappert MF . The coordination chemistry of electron-rich alkenes (enetetramines). J. Organomet. Chem.358 (1–3), 185–213 (1988).
  • Arduengo AJ III , HarlowRL, KlineM. A table crystalline carbene. J. Am. Chem. Soc.113 (1), 361–363 (1991).
  • Herrmann WA , KöcherC. N-Heterocyclic carbenes. Angew. Chem. Int. Ed.36 (20), 2163–2187 (1997).
  • Heinemann C , MullerT, ApeloigY, SchwarzH. On the question of stability, conjugation, and “aromaticity” in imidazol-2-ylidenes and their silicon analogs. J. Am. Chem. Soc.118 (8), 2023–2038 (1996).
  • Bourissou D , GuerretO, GabbaïFP, BertrandG. Stable carbenes. Chem. Rev.100 (1), 39–92 (2000).
  • Herrmann WA . N-Heterocyclic carbenes: a new concept in organometallic catalysis. Angew. Chem Int. Ed.41 (8), 1290–1309 (2002).
  • Tulloch AAD , DanopoulosAA, KleinhenzS, LightME, HursthouseMB, EasthamG. Structural diversity in pyridine-N-functionalized carbene copper(I) complexes. Organometallics20 (10), 2027–2031 (2001).
  • Hu X , TangY, GantzelP, MeyerK. Silver complexes of a novel tripodal N-heterocyclic carbene ligand: evidence for significant metal-carbene π-interaction. Organometallics22 (4), 612–614 (2003).
  • Cantat T , DemangeM, MézaillesN, RicardL, JeanY, FlochPL. A Bis(thiophosphinoyl)methylne ruthenium carbene complex: synthesis, X-ray crystal structure, and DFT calculations of its thermally promoted reverse α-hydride migration process. Organometallics24 (20), 4838–4841 (2005).
  • Boehme C , FrenkingG. N-Heterocyclic carbene, silylene, and germylene complexes of MCl (M = Cu, Ag, Au). A theoretical study. Organometallics17 (26), 5801–5809 (1998).
  • Green JC , ScurrRG, ArnoldPL, ClokeFGN. An experimental and theoretical investigation of the electronic structure of Pd and Pt bis(carbene) complexes. Chem. Commun.1963–1964 (1997).
  • Zinn FK , ViciuMS, NolanSP. Carbenes: reactivity and catalysis. Annu. Rep. Prog. Chem., Sect. B, 100, 231–249 (2004).
  • Scholl M , DingS, LeeCW, GrubbsRH. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett.1 (6), 953–956 (1999).
  • Sanford MS , LoveJA, GrubbsRH. Mechanism and activity of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc.123 (27), 6543–6554 (2001).
  • Seiders TJ , WilliamsDW, GrubbsRH. Enantioselective ruthenium-catalyzed ring-closing metathesis. Org. Lett.3 (20), 3225–3228 (2001).
  • Herrmann WA , ElisonM, FischerJ, KocherC, ArtusGRJ. Metal complexes of N-heterocyclic carbenes-a new structural principle for catalysts in homogeneous catalysis. Angew. Chem. Int. Ed. Engl.34 (21), 2371–2374 (1995).
  • Weskamp T , SchattenmannWC, SpieglerM, HerrmannWA. A novel class of ruthenium catalysts for olefin metathesis. Angew. Chem. Int. Ed.37 (18), 2490–2493 (1998).
  • Cheng J , TrudellML. Synthesis of N-heteroaryl-7-azabicyclo [2.2.1] heptane derivatives via palladium-bisimidazol-2-ylidene complex catalyzed amination reactions. Org. Lett.3 (9), 1371–1374 (2001).
  • Oehninger L , RubbianiR, OttI. N-Heterocyclic carbene metal complexes in medicinal chemistry. Dalton Trans.42, 3269–3284 (2013).
  • Gautier A , CisnettiF. Advances in metal-carbene complexes as potent anti-cancer agents. Metallomics4, 23–32 (2012).
  • Teyssot ML , JarrousseAS, ManinMet al. Metal-NHC complexes: a survey of anti-cancer properties. Dalton Trans.6894–6902 (2009).
  • Hu C , LiX, WangW, ZhangR, DengL. Metal-N-heterocyclic carbene complexes as anti-tumor agents. Curr. Med. Chem.21 (10), 1220–1230 (2014).
  • Cotton FA , WilkinsonG, MurilloCA, BochmannM. Advanced Inorganic Chemistry (6th Edition). Wiley & Sons, New York, NY, USA, 677–678 (1999).
  • Maasbol A , FischerEO. Zur frage eines wolfram-carbonyl-carben-komplexes. Angew. Chem.76 (14), 645 (1964).
  • Fischer EO . Auf dem weg zu carben- und carbin-komplexen (nobel-vortrag). Angew. Chem.86 (18), 651–663 (1974).
  • Herndon JW . The chemistry of the carbon – transition metal double and triple bond: annual survey covering the year 1998. Coord. Chem. Rev.209 (1), 387–451 (2000).
  • Schorck RR . Alkylcarbene complex of tantalum by intramolecular. alpha.-hydrogen abstraction. J. Am. Chem. Soc.96 (21), 6796–6797 (1974).
  • Schorck RR . Alkylidene complexes of niobium and tantalum. Acc. Chem. Res.12 (3), 98–104 (1979).
  • Wanzlick HW , SchonherrHJ. Direkt-synthese eines quecksilbersalz-carben-komplexes. Angew. Chem.80 (4), 154 (1968).
  • Hahn FE . Heterocyclic carbenes. Angew. Chem. Int. Ed.45 (9), 1348–1352 (2006).
  • Arduengo AJ III , GoerlichJR, MarshallWJ. A stable diaminocarbene. J. Am. Chem. Soc.117 (44), 11027–11028 (1995).
  • Denk MK , ThandaniA, HatanoK, LoughAJ. Steric stabilization of nucleophilic carbenes. Angew. Chem. Int. Ed.36 (23), 2607–2609 (1997).
  • Enders D , BalensieferT. Nucleophilic carbenes in asymmetric organocatalysis. Acc. Chem. Res.37 (8), 534–541 (2004).
  • Fekete A , NyulasziL. Phosphorus stabilized carbenes: theoretical predictions. J. Organomet. Chem.643–644, 278–284 (2002).
  • Schoeller WW , EisnerD. The 1,4-Diphosphabuta-1,3-diene ligand for coordination of divalent group 13 and 14 elements?: a density functional study. Inorg. Chem.43 (8), 2585–2589 (2004).
  • Arduengo AJ III , GoerlichJR, MarshallWJ. A stable thiazol-2-ylidene and its dimer. Leibigs. Ann.1997 (2), 365–374 (1997).
  • Alder RW , BlakeME, ChakerL, HarveyJN, PaoliniF, SchutzJ. When and how do diaminocarbenes dimerize. Angew. Chem. Int. Ed.43 (44), 5896–5911 (2004).
  • Sole S , GornitzkaH, SchoellerWW, BourissouD, BertrandG. Amino)(Aryl)carbenes: stable singlet carbenes featuring a spectator substituent. Science292, 1901–1903 (2001).
  • Cattoen X , GornitzkaH, BourissouD, BertrandG. Amino-aryl-carbenes: alternative ligands for transition metals. J. Am. Chem. Soc.126 (5), 1342–1343 (2004).
  • Lavallo V , MafhouzJ, CanacY, DonnadieuB, SchoellerWW, BertrandG. Synthesis, reactivity, and ligand properties of a stable alkyl carbene. J. Am. Chem. Soc.126 (28), 8670–8671 (2004).
  • Lavallo V , CanacY, PrasangC, DonnadieuB, BertrandG. Stable cyclic (alkyl)(amino)carbenes as rigid or flexible, bulky, electron-rich ligands for transition-metal catalysts: a Quaternary carbon atom makes the difference. Angew. Chem. Int. Ed.44 (35), 5705–5709 (2005).
  • Hahn FE , WittenbecherL, BoeseR, BlaserR. N, N′-Bis(2,2-dimethylpropyl)benzimidazolin-2-ylidene: a stable nucleophilic carbene derived from benzimidazole. Chem. Eur. J.5 (6), 1931–1935 (1999).
  • Hahn FE , WittenbecherL, VanDL, FrohlichR. Evidence for an equilibrium between an N-heterocyclic carbene and its dimer in solution. Angew. Chem. Int. Ed.39 (3), 541–544 (2000).
  • Altenhoff G , GoddardR, LehmannCW, GloriusF. An N-heterocyclic carbene ligand with flexible steric bulk allows Suzuki cross-coupling of sterically hindered aryl chlorides at room temperature. Angew. Chem. Int. Ed.42 (31), 3690–3693 (2003).
  • Saravanakumar S , KindermannMK, HeinickeJ, KockerlingM. Influence of anellation in N-heterocyclic carbenes: novel quinoxaline-anellated NHCs trapped as transition metal complexes. Chem. Commun.640–642 (2006).
  • Saravanakumar S , OperaAI, KindermannMK, JonesPG, HeinickeJ. Anellated N-heterocyclic carbenes: 1,3-Dineopentylnaphtho[2,3-d]imidazol-2-ylidene: synthesis, KOH addition product, transition-metal complexes, and anellation effects. Chem. Eur. J.12 (11), 3143–3154 (2006).
  • Despagnet-Ayoub E , GrubbsRH. A Stable four-membered N-heterocyclic carbene. J. Am. Chem. Soc.126 (33), 10198–101199 (2004).
  • Mayr M , WurstK, OnganiaKH, BuchmeiserMR. 3-Dialkyl- and 1,3-diaryl-3,4,5,6-tetrahydropyrimidin-2-ylidene rhodium(I)and palladium(II) complexes: Synthesis, structure, and reactivity. Chem. Eur. J.10 (5), 1256–1266 (2004).
  • Yun J , MarinezER, GrubbsRH. A new ruthenium-based olefin metathesis catalyst coordinated with 1,3-dimesityl-1,4,5,6-tetrahydropyrimidin-2-ylidene: synthesis, X-ray structure, and reactivity. Organometallics23 (18), 4172–4173 (2004).
  • Bazinet P , YapGPA, RichesonDS. Constructing a stable carbene with a novel topology and electronic framework. J. Am. Chem. Soc.125 (44), 13314–13315 (2003).
  • Scarborough GC , GradyMJW, GuzeiIA, GandhiBA, BrunelEE, StahlSS. Pd(II) Complexes possessing a seven-membered N-heterocyclic carbene ligand. Angew. Chem. Int. Ed.44 (33), 5269–5272 (2005).
  • Alcarazo M , RosebladeSJ, CowleyAR, FernandezR, BrownJM, LassalettaJM. Imidazo[1,5-a]pyridine: a versatile architecture for stable N-heterocyclic carbenes. J. Am. Chem. Soc.127 (10), 3290–3291 (2005).
  • Weiss R , ReichelS, HandkeM, HampelF. Generation and trapping reactions of a formal 1:1 complex between singlet carbon and 2,2′-bipyridine. Angew. Chem. Int. Ed.37 (3), 344–347 (1998).
  • Boydston AJ , BielawskiCW. Bis(imidazolylidene)s as modular building blocks for monomeric and macromolecular organometallic materials. Dalton Trans.4073–4077 (2006).
  • Ofele K . Pentacarbonyl(2,3-diphenylcyclopropenylidene)-chromium(0). Angew. Chem. Int. Ed.7 (12), 950 (1968).
  • Herrmann WA , KocherC. Heterocyclic carbenes. One-pot synthesis of rhodium and iridium carbene complexes. J. Organomet. Chem.532 (1–2), 261–265 (1997).
  • Mankad NP , LaitarDS, SadighiJP. Synthesis, structure, and alkyne reactivity of a dimeric (carbene)copper(I) hydride. Organometallics23 (14), 3369–3371 (2004).
  • Wang HMJ , LinIJB. Facile synthesis of silver(I)?carbene complexes. Useful carbene transfer agents. Organometallics17 (5), 972–975 (1998).
  • Lappert MF . The coordination chemistry of electron-rich alkenes (enetetramines). J. Organomet. Chem.358 (1–3), 185–213 (1988).
  • Garrison JC , YoungsWJ. Ag(I) N-Heterocyclic carbene complexes?: synthesis, structure, and application. Chem. Rev.105 (11), 3978–4008 (2005).
  • Liu ST , HsiehTY, LeeGH, PengSM. Carbene transfer between transition-metal ions. Organometallics17 (6), 993–995 (1998).
  • Nemcsok D , WichmannK, FrenkingG. The significance of π interactions in group 11 complexes with N-heterocyclic carbenes. Organometallics23 (15), 3640–3646 (2004).
  • Hu X , RodriguezIC, OlsenK, MeyerK. Group 11 metal complexes of N-heterocyclic carbene ligands: nature of the metal-carbene bond. Organometallics23 (4), 755–764 (2004).
  • Glorius FN . Heterocyclic Carbenes in Transition Metal Catalysis. Springer, Berlin and Heidelberg, 21, 6 (2007).
  • Altenhoff G , GoddardR, LehmannCW, GloriusF. Sterically demanding, bioxazoline-derived N-heterocyclic carbene ligands with restricted flexibility for catalysis. J. Am. Chem. Soc.126 (46), 15195–15201 (2004).
  • Glorius F , AltenhoffG, GoddardR, LehmannC. Oxazolines as chiral building blocks for imidazolium salts and N-heterocyclic carbene ligands. Chem. Commun.2704–2705 (2002).
  • Glorius F , AltenhoffG, WurtzS. The first palladium-catalyzed Sonogashira coupling of unactivated secondary alkyl bromides. Tet. Lett.47 (17), 2925–2928 (2006).
  • Tan KL , BergmanRG, EllmanJA. Intermediacy of an N-heterocyclic carbene complex in the catalytic C-H activation of a substituted benzimidazole. J. Am. Chem. Soc.124 (13), 3202–3203 (2002).
  • Nonnenmacher M , KunzD, RomingerF, OeserT. X-ray crystal structures of 10π- and 14π-electron pyrido-annelated N-heterocyclic carbenes. Chem. Commun.1378–1380 (2006).
  • Binobaid A , IglesiasM, BeetstraDJet al. Expanded ring and functionalized expanded ring N-heterocyclic carbenes as ligands in catalysis. Dalton Trans.7099–7112 (2009).
  • Alder RW , BlakeME, BortolottiCet al. Complexation of stable carbenes with alkali metals. Chem. Commun.3, 241–242 (1999).
  • Muehlhofer M , StrassnerT, HerrmannWA. New catalyst systems for the catalytic conversion of methane into methanol. Angew. Chem., Int. Ed. Engl.41 (10), 1745–1747 (2002).
  • Hahn FE , LangenhahnV, LueggerT, PapeT, Le VanD. Template synthesis of a coordinated tetracarbene ligand with crown ether topology. Angew. Chem. Int. Ed.44 (24), 3759–3763 (2005).
  • Hahn FE , LangenhahnV, PapeT. Template synthesis of tungsten complexes with saturated N-heterocyclic carbene ligands. Chem. Commun.43, 5390–5392 (2005).
  • Melaiye A , SimonsRS, MilstedAet al. Formation of water-soluble pincer silver(I)-carbene complexes: a novel antimicrobial agent. J. Med. Chem.47 (4), 973–977 (2004).
  • Melaiye A , SunZ, HindiKet al. Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc.127 (7), 2285–2291 (2005).
  • Barnard PJ , BakerMV, Berners-PriceSJ, DayDA. Mitochondrial permeability transition induced by dinuclear gold(I)-carbene complexes: potential new antimitochondrial antitumour agents. J. Inorg. Biochem.98 (10), 1642–1647 (2004).
  • Barnard PJ , BakerMV, Berners-PriceSJ, SkeltonBW, WhiteAH. Dinuclear gold(I) complexes of bridging bidentate carbene ligands: synthesis, structure and spectroscopic characterization. Dalton Trans.1038–1047 (2004).
  • Baker MV , BarnardPJ, Berners-PriceSJ, BrayshawSK, HickeyJL, SkeltonBW, WhiteAH. Synthesis and structural characterisation of linear Au(I) N-heterocyclic carbene complexes: new analogues of the Au(I) phosphine drug Auranofin. J. Organomet. Chem.690 (24–25), 5625–5635 (2005).
  • Özdemir I , DenizciA, ÖzturkHT, CetinkayaB. Synthetic and antimicrobial studies on new gold(I) complexes of imidazolidin-2-ylidenes. Appl. Organometal. Chem.18 (7), 318–322 (2004).
  • Hu C , LiX, WangW, ZhangR, DengL. Metal-N-heterocyclic carbene complexes as anti-tumor agents. Curr. Med. Chem.21, 1220–1230 (2014).
  • Aher SB , MuskawarPN, ThenmozhiK, BhagatPR. Recent developments of metal N-heterocyclic carbenes as anticancer agents. Eur. J. Med. Chem.81, 408–419 (2014).
  • Cannon CL , HogueLA, VajraveluRKet al. In vitro and murine efficacy and toxicity studies of nebulized SCC1, a methylated caffeine-Silver(I) complex, for treatment of pulmonary infections. Antimicrob. Agents Chemother.53, 3285–3293 (2009).
  • Medvetz DA , HindiKM, PanznerMJ, DittoAJ, YunYH, YoungsWJ. Anticancer activity of Ag(I) N-heterocyclic carbene complexes derived from 4,5-dichloro-1H-imidazole. Met. Based Drugs2008, 384010 (2008).
  • Russel AD , PathFR, HugoWB. Antimicrobial activity and action of silver. Prog. Med. Chem.31, 351 (1994).
  • Lansdown ABG . A review of the use of silver in wound dressings: facts and fallacies. Br. J. Nurs.13, S6–S19 (2004).
  • Von Naegelli V . Silver nitrate: a very effective antimicrobial agent. Deut. Schr. Schweiz. Naturforsch. Ges.33, 174–182 (1893).
  • Dunn PM . Dr Carl Credé (1819–1892) and the prevention of ophthalmia neonatorum. Arch. Dis. Child. Fetal Neonatal Ed.83 (2), F158–F159 (2000).
  • Lansdown ABG . Metallothioneins: potential therapeutic aids for wound healing in the skin. Wound Repair Reagen.10 (3), 130–132 (2002).
  • Moyer CA . Treatment of large human burns with 0.5 per cent silver nitrate solution. Arch. Surg.90, 812–867 (1965).
  • Fox C . Silver sulfadiazine: a new topical therapy for Pseudomonas in burns. Arch. Surg.96, 840–851 (1968).
  • Baenziger NC , StrussAW. Crystal structure of 2-sulfanilamidopyrimidinesilver(I). Inorg. Chem.15 (8), 1807–1809 (1976).
  • Graham C . The role of silver in wound healing. Br. J. Nurs.14 (19), S22–S26 (2005).
  • Hindi KM , PanznerMJ, TessierCA, CannonCL, YoungsWJ. The medicinal applications of imidazolium carbene-metal complexes. Chem. Rev.109, 3859–3884 (2009).
  • Ray S , MohanR, SinghJKet al. Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J. Am. Chem. Soc.129, 15042–15053 (2007).
  • Siciliano TJ , DeblockMC, HindiKMet al. Synthesis and anticancer properties of gold(I) and silver(I) N-heterocyclic carbene complexes. J. Organomet. Chem.696, 1066–1071 (2011).
  • Roland S , JolivaltC, CresteilTet al. Investigation of a series of Silver-N-heterocyclic carbenes as antibacterial agents: activity, synergistic effects, and cytotoxicity. Chem. Eur. J.17 (5), 1442–1446 (2011).
  • Patil S , ClaffeyJ, DeallyAet al. Synthesis, cytotoxicity and antibacterial studies of p-methoxybenzyl-substituted and benzyl-substituted N-heterocyclic carbene-silver complexes. Eur. J. Inorg. Chem.2010 (7), 1020–1031 (2010).
  • Patil S , DeallyA, GleesonBet al. Synthesis, cytotoxicity and antibacterial studies of novel symmetrically and non-symmetrically p-nitrobenzyl-substituted N-heterocyclic carbene-silver(I) acetate complexes. Z. Anorg. Allg. Chem.637, 386–396 (2011).
  • Patil S , DeallyA, GleesonB, Muller-BunzH, ParadisiF, TackeM. Novel benzyl-substituted N-heterocyclic carbene-silver acetate complexes: synthesis, cytotoxicity and antibacterial studies. Metallomics3, 74–88 (2011).
  • Patil S , DietrichK, DeallyAet al. Synthesis, cytotoxicity and antibacterial studies of novel symmetrically and nonsymmetrically 4-(methoxycarbonyl)benzyl-substituted N-heterocyclic carbene-silver acetate complexes. Helv. Chimi. Acta93, 2347–2364 (2010).
  • Patil S , DeallyA, GleesonB, Muller-BunzH, ParadisiF, TackeM. Synthesis, cytotoxicity and antibacterial studies of symmetrically and non-symmetrically benzyl- or p-cyanobenzyl-substituted N-heterocyclic carbene-silver complexes. Appl. Organomet. Chem.24, 781–793 (2010).
  • Wang CH , ShihWC, ChangHCet al. Preparation and characterization of amino-linked heterocyclic carbene palladium, gold, and silver complexes and their use as anticancer agents that act by triggering apoptotic cell death. J. Med. Chem.54, 5245–5249 (2011).
  • Kaps L , BiersackB, Muller-BunzHet al. Gold(I)-NHC complexes of antitumoraldiarylimidazoles: structures, cellular uptake routes and anticancer activities. J. Inorg. Biochem.106, 52–58 (2012).
  • Streciwilk W , CassidyJ, HackenbergF, Müller-BunzH, ParadisiF, TackeM. Synthesis, cytotoxic and antibacterial studies of p-benzyl-substituted NHC-silver(I) acetate compounds derived from 4,5-di-pdiisopropylphenyl-or 4,5-di-p-chlorophenyl-1H-imidazole. J. Organomet. Chem.749, 88–99 (2014).
  • Akkoc S , GokY, OzdemirI, GunalS. N-Heterocyclic carbene silver complexes: synthesis, characterization and in vitro antimicrobial studies. J. Chinese Adv. Mater. Soc.2 (1), 20–30 (2014).
  • Haque RA , SalmanAW, BudagumpiS, AbdullahAA, Abdul MajidAMS. Sterically tuned Ag(I)- and Pd(II)-N-heterocyclic carbene complexes of imidazol-2-ylidenes: synthesis, crystal structures, and in vitro antibacterial and anticancer studies. Metallomics5, 760–769 (2013).
  • Haque RA , AsekunowoPO, BudagumpiS. Binuclear silver(I) complexes of p-xylyl/2,6-lutidinyl linked bis-N-heterocyclic carbene ligands: synthesis, crystal structures and biological evaluation. Inorg. Chem. Commun.47, 56–59 (2014).
  • Haque RA , SalmanAW, BudagumpiS, AbdullahAA, Al-MudarisZAA, Abdul MajidAMS. Silver(I)-N-heterocyclic carbene complexes ofbis-imidazol-2-ylidenes having different aromatic-spacers: synthesis, crystal structure, and in vitro antimicrobial and anticancer studies. Appl. Organometal. Chem.27, 465–473 (2013).
  • Zulikha HZ , HaqueRA, BudagumpiS, Abdul MajidAMS. Topology control innitrile-functionalized silver(I)–N-heterocycliccarbene complexes: synthesis, molecular structures, and in vitro anticancer studies. Inorg. Chim. Acta411, 40–47 (2014).
  • Haque RA , BudagumpiS, ZulikhaHZ, HasanudinN, Khadeer AhamedMB, Abdul MajidAMS. Silver(I)-N-heterocyclic carbene complexes of nitrile-functionalizedimidazol-2-ylidene ligands as anticancer agents. Inorg. Chem. Commun.44, 128–133 (2014).
  • Higby GJ . Gold in medicine: a review of its use in the West before 1900. Gold Bull.15 (4), 130–140 (1982).
  • Parish RV . Gold in medicine-chrysotherapy. Interdisc. Sci. Rev.17 (3), 221–228 (1992).
  • Champion GD , GrahamGG, ZieglerJB. Chrysotherapy, treatment with gold based drugs. Ballieres Clin. Rheumatol.4, 491–534 (1990).
  • Thomas RE , PapandreaRA. Treatment of psoriasis with topical auranofin. Med. J Aust.158 (10), 720 (1993).
  • Shaw CF III . Gold-based therapeutic agents. Chem. Rev.99 (9), 2589–2600 (1999).
  • Ott I . On the medicinal chemistry of gold complexes as anticancer drugs. Coord. Chem. Rev.253 (11–12), 1670–1681 (2009).
  • Krishnamurthy D , KarverMR, FiorilloEet al. Gold(I)-mediated inhibition of protein tyrosine phosphatases: a detailed in vitro and cellular study. J. Med. Chem.51, 4790–4795 (2008).
  • Horvath UEI , BentivoglioG, HummelMet al. Cytotoxic bis(carbene) gold(I) complex offerrocenyl complexes: synthesis and structural characterization. New J. Chem.32, 533–539 (2008).
  • Lemke J , PintoA, NiehoffP, VasylyevaV, Metzler-NolteN. Synthesis, structural characterization and anti-proliferative activity of NHC gold amino acid and peptide conjugates. Dalton Trans.35, 7063–7070 (2009).
  • Patil S , DeallyA, HackenbergFet al. Novel benzyl- or 4-cyanobenzyl-substituted N-heterocyclic (bromo)(carbene)silver(I) and (carbene)(chloro)gold(I) complexes: synthesis and preliminary cytotoxicity studies. Helv. Chimi. Acta94, 1551–1562 (2011).
  • Bertrand B , StefanL, PirrottaMet al. Caffeine-based gold(I) N?heterocyclic carbenes as possible anticancer agents: synthesis and biological properties. Inorg. Chem.53, 2296–2303 (2014).
  • Messori L , MarchettiL, MassaiLet al. Chemistry and biology of two novel gold(I) carbene complexes as prospective anticancer agents. Inorg. Chem.53, 2396–2403 (2014).
  • Zou T , LumCT, LokC, ToW, LowK, CheC. A binuclear gold(I) complex with mixed bridging diphosphine and bis(N-heterocyclic carbene) ligands shows favorable thiolreactivity and inhibits tumor growth and angiogenesis in vivo. Angew. Chem. Int. Ed. Engl.53, 5810–5814 (2014).
  • Fernández GA , GurovicMSV, OliveraNL, ChopaAB, SilbestriGF. Antibacterial properties of water-soluble gold(I) N-heterocyclic carbene complexes. J. Inorg. Biochem.135, 54–57 (2014).
  • Bertrand B , BodioE, RichardP, PicquetM, GendrePL, CasiniA. Gold(I) N-heterocyclic carbene complexes with an “activable” ester moiety: possible biological applications. J. Organomet. Chem.775, 124–129 (2014).
  • Hackenberg F , Muller-BunzH, SmithR, StreciwilkW, ZhuX, TackeM. Novel ruthenium(II) and gold(I) NHC complexes: synthesis, characterization, and evaluation of their anticancer properties. Organometallics32, 5551–5560 (2013).
  • Tisato F , MarzanoC, PorchiaM, PelleiM, SantiniC. Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev.30, 708–749 (2010).
  • Drewry JA , GunningPT. Recent advances in biosensory and medicinal therapeuticapplications of zinc(II) and copper(II) coordination complexes. Coord. Chem. Rev.255, 459–472 (2011).
  • Teyssot ML , JarrousseAS, ChevryAet al. Toxicity of copper(I)-NHC complexes against human tumor cells: induction of cell cycle arrest, apoptosis, and DNA cleavage. Chem. Eur. J.15, 314–318 (2009).
  • Streciwilk W , HackenbergF, Müller-BunzH, TackeM. Synthesis and cytotoxicity studies of p-benzyl substituted NHC-copper(I) bromide derivatives. Polyhedron80, 3–9 (2014).
  • Gao EJ , LiuC, ZhuMC, LinHK, WuQ, LiuL. Current development of Pd(II) complexes as potential antitumor agents. Anti-Cancer Agents Med. Chem.9, 356–368 (2009).
  • Abu-Surrah AS , KettunenM. Platinum group antitumor chemistry: design anddevelopment of new anticancer drugs complementary to cisplatin. Curr. Med. Chem.13, 1337–1357 (2006).
  • Ray S , AsthanaJ, TanskiJM, ShaikhMM, PandaD, GhoshP. Design of nickel chelates of tetradentateN-heterocyclic carbenes with subdued cytotoxicity. J. Organomet. Chem.694, 2328–2335 (2009).
  • Antonarakis ES , EmadiA. Ruthenium-based chemotherapeutics: are they ready for prime time?Cancer Chemoth. Pharm.66 (1), 1–9 (2010).
  • Rademaker-Lakhai JM , van den BongardD, PluimD, BeijnenJH, SchellensJHM. Clin. Cancer Res.10, 3717–3727 (2004).
  • Hartinger CG , JakupecMA, Zorbas-SeifriedSet al. KP1019, a new redox-active anticancer agent—preclinical development and results of a clinical Phase I study in tumor patients. Chem. Biodivers.5 (10), 2140–2155 (2008).
  • Kilpin KJ , CrotS, RiedelT, KitchenJA, DysonPJ. Ruthenium(II) and osmium(II) 1,2,3-triazolylideneorganometallics: a preliminary investigation intothe biological activity of ‘click’ carbene complexes. Dalton Trans.43, 1443–1448 (2014).
  • Dinda J , AdhikarySD, RoymahapatraG, NakkaKK, SantraMK. Synthesis, structure, electrochemistry and cytotoxicity studies of ruthenium (II)and platinium(II)-N-heterocyclic carbene complexes of CNC-pincer ligand. Inorg. Chim. Acta413, 23–31 (2014).
  • Oehninger L , StefanopoulouM, AlborziniaHet al. Evaluation of arene ruthenium(II) N-heterocycliccarbene complexes as organometallics interacting withthiol and selenol containing biomolecules. Dalton Trans.42, 1657–1666, (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.