252
Views
0
CrossRef citations to date
0
Altmetric
Review

Progress Toward Rationally Designed Small-Molecule Peptide and Peptidomimetic CXCR4 Antagonists

, &
Pages 1261-1283 | Published online: 06 Jul 2015

References

  • Ripka AS , RichDH. Peptidomimetic design. Curr. Opin. Chem. Biol.2 (4), 441–452 (1998).
  • Wu B , ChienEYT, MolCDet al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science330 (6007), 1066–1071 (2010).
  • Qin L , KufarevaI, HoldenLGet al. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science347 (6226), 1117–1122 (2015).
  • IUPHAR/BPS . Guide to pharmacology. www.guidetopharmacology.org.
  • Luster AD . Chemokines - chemotactic cytokines that mediate inflammation. N. Engl. J. Med.338 (7), 436–445 (1998).
  • Nagasawa T , NakajimaT, TachibanaKet al. Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc. Natl Acad. Sci. USA93 (25), 14726–14729 (1996).
  • Endres MJ , ClaphamPR, MarshMet al. CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell87 (4), 745–756 (1996).
  • Lapham CK , OuyangJ, ChandrasekharB, NguyenNY, DimitrovDS, GoldingH. Evidence for cell-surface association between fusin and the CD4-gp120 complex in human cell lines. Science274 (5287), 602–605 (1996).
  • Oberlin E , AmaraA, BachelerieFet al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature382 (6594), 833–835 (1996).
  • Bachelerie F , Ben-BaruchA, BurkhardtAMet al. International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev.66 (1), 1–79 (2014).
  • Bajetto A , BonaviaR, BarberoS, FlorioT, CostaA, SchettiniG. Expression of chemokine receptors in the rat brain. Ann. N Y Acad. Sci.876 (1), 201–209 (1999).
  • Han Y , WangJ, HeT, RansohoffRM. TNF-α down-regulates CXCR4 expression in primary murine astrocytes. Brain Res.888 (1), 1–10 (2001).
  • Barbero S , BajettoA, BonaviaRet al. Expression of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 in human brain tumors and their involvement in glial proliferation in vitro. Ann. N Y Acad. Sci.973 (1), 60–69 (2002).
  • Ma Q , JonesD, BorghesaniPRet al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl Acad. Sci. USA95 (16), 9448–9453 (1998).
  • Scotton CJ , WilsonJL, MillikenD, StampG, BalkwillFR. Epithelial cancer cell migration: A role for chemokine receptors?Cancer Res.61 (13), 4961–4965 (2001).
  • Kulbe H , LevinsonNR, BalkwillF, WilsonJL. The chemokine network in cancer - much more than directing cell movement. Int. J. Dev. Biol.48 (5–6), 489–496 (2004).
  • Balkwill F . The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol.14 (3), 171–179 (2004).
  • Balkwill F . Cancer and the chemokine network. Nat. Rev. Cancer4 (7), 540–550 (2004).
  • Muller A , HomeyB, SotoHet al. Involvement of chemokine receptors in breast cancer metastasis. Nature410 (6824), 50–56 (2001).
  • Terasaki M , SugitaY, ArakawaF, OkadaY, OhshimaK, ShigemoriM. CXCL12/CXCR4 signaling in malignant brain tumors: A potential pharmacological therapeutic target. Brain Tumor Pathol.28 (2), 89–97 (2011).
  • Kuil J , BuckleT, Van LeeuwenFWB. Imaging agents for the chemokine receptor 4 (CXCR4). Chem. Soc. Rev.41 (15), 5239–5261 (2012).
  • Knight JC , WuestFR. Nuclear (PET/SPECT) and optical imaging probes targeting the CXCR4 chemokine receptor. Med. Chem. Commun.3 (9), 1039–1053 (2012).
  • George GP , PisaneschiF, NguyenQD, AboagyeEO. Positron emission tomographic imaging of CXCR4 in cancer: Challenges and promises. Mol. Imaging13, 1–19 (2014).
  • Larochelle A , KrouseA, MetzgerMet al. AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood107 (9), 3772–3778 (2006).
  • Masyuk M , AbduelmulaA, Morosan-PuopoloGet al. Retrograde migration of pectoral girdle muscle precursors depends on CXCR4/SDF-1 signaling. Histochem. Cell Biol.142 (5), 473–488 (2014).
  • Masyuk M , Brand-SaberiB. Recruitment of skeletal muscle progenitors to secondary sites: a role for CXCR4/SDF-1 signalling in skeletal muscle development. In : Vertebrate Myogenesis. Brand-SaberiB ( Ed). Springer Berlin–Heidelberg, Germany, 1–23 (2015).
  • Glawe JD , MijalisEM, DavisWCet al. SDF-1-CXCR4 differentially regulates autoimmune diabetogenic T cell adhesion through ROBO1-SLIT2 interactions in mice. Diabetologia56 (10), 2222–2230 (2013).
  • Fujiyama T , ItoT, OgawaN, SudaT, TokuraY, HashizumeH. Preferential infiltration of interleukin-4-producing CXCR4+ T cells in the lesional muscle but not skin of patients with dermatomyositis. Clin. Exp. Immunol.177 (1), 110–120 (2014).
  • Wang A , GuilpainP, ChongBFet al. Dysregulated expression of CXCR4/CXCL12 in subsets of patients with systemic lupus erythematosus. Arthritis Rheum.62 (11), 3436–3446 (2010).
  • Launay O , PaulS, ServettazAet al. Control of humoral immunity and auto-immunity by the CXCR4/CXCL12 axis in lupus patients following influenza vaccine. Vaccine31 (35), 3492–3501 (2013).
  • O'Brien WA , Sumner-SmithM, MaoSH, SadeghiS, ZhaoJQ, ChenIS. Anti-human immunodeficiency virus type 1 activity of an oligocationic compound mediated via gp120 V3 interactions. J. Virol.70 (5), 2825–2831 (1996).
  • Doranz BJ , Grovit-FerbasK, SharronMPet al. A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J. Exp. Med.186 (8), 1395–1400 (1997).
  • Doranz BJ , FilionLG, Diaz-MitomaFet al. Safe use of the CXCR4 inhibitor ALX40–4C in humans. AIDS Res. Hum. Retroviruses17 (6), 475–486 (2001).
  • Nakashima H , MasudaM, MurakamiTet al. Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-7]polyphemusin II): a possible inhibitor of virus-cell fusion. Antimicrob. Agents Chemother.36 (6), 1249–1255 (1992).
  • Feng Y , BroderCC, KennedyPE, BergerEA. HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science272 (5263), 872–877 (1996).
  • Murakami T , NakajimaT, KoyanagiYet al. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J. Exp. Med.186 (8), 1389–1393 (1997).
  • Tamamura H , XuY, HattoriTet al. A low-molecular-weight inhibitor against the chemokine receptor CXCR4: A strong anti-HIV peptide T140. Biochem. Biophys. Res. Commun.253 (3), 877–882 (1998).
  • Crump MP , GongJH, LoetscherPet al. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J.16 (23), 6996–7007 (1997).
  • Loetscher P , GongJ-H, DewaldB, BaggioliniM, Clark-LewisI. N-terminal peptides of stromal cell-derived factor-1 with CXC chemokine receptor 4 agonist and antagonist activities. J. Biol. Chem.273 (35), 22279–22283 (1998).
  • De Clercq E . The bicyclam AMD3100 story. Nat. Rev. Drug Discov.2 (7), 581–587 (2003).
  • ClinicalTrials.gov . https://clinicaltrials.gov.
  • Grande F , GarofaloA, NeamatiN. Small molecules anti-HIV therapeutics targeting CXCR4. Curr. Pharm. Des.14 (4), 385–404 (2008).
  • Debnath B , XuS, GrandeF, GarofaloA, NeamatiN. Small molecule inhibitors of CXCR4. Theranostics3 (1), 47–75 (2013).
  • Oishi S , FujiiN. Peptide and peptidomimetic ligands for CXC chemokine receptor 4 (CXCR4). Org. Biomol. Chem.10, 5720–5731 (2012).
  • Zhang WB , NavenotJM, HaribabuBet al. A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40–4C are weak partial agonists. J. Biol. Chem.277 (27), 24515–24521 (2002).
  • Fujii N , OishiS, HiramatsuKet al. Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. Angew. Chem. Int. Ed. Engl.42 (28), 3251–3253 (2003).
  • Kufareva I , RuedaM, KatritchV, StevensRC, AbagyanR. Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure19 (8), 1108–1126 (2011).
  • Demarco SJ , HenzeH, LedererAet al. Discovery of novel, highly potent and selective β-hairpin mimetic CXCR4 inhibitors with excellent anti-HIV activity and pharmacokinetic profiles. Biorg. Med. Chem.14 (24), 8396–8404 (2006).
  • Ruiz-Gomez G , TyndallJD, PfeifferB, AbbenanteG, FairlieDP. Update 1 of: Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure. Chem. Rev.110 (4), PR1–PR41 (2010).
  • Tamamura H , SugiokaM, OdagakiYet al. Conformational study of a highly specific CXCR4 inhibitor, T140, disclosing the close proximity of its intrinsic pharmacophores associated with strong anti-HIV activity. Bioorg. Med. Chem. Lett.11 (3), 359–362 (2001).
  • Tamamura H , OmagariA, OishiSet al. Pharmacophore identification of a specific CXCR4 inhibitor, T140, leads to development of effective anti-HIV agents with very high selectivity indexes. Bioorg. Med. Chem. Lett.10 (23), 2633–2637 (2000).
  • Maestro, version 10.0. Schrödinger. LLC, NY, USA (2014).
  • Gerlach LO , SkerljRT, BridgerGJ, SchwartzTW. Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J. Biol. Chem.276 (17), 14153–14160 (2001).
  • Hatse S , PrincenK, VermeireKet al. Mutations at the CXCR4 interaction sites for AMD3100 influence anti-CXCR4 antibody binding and HIV-1 entry. FEBS Lett.546 (2–3), 300–306 (2003).
  • Rosenkilde MM , GerlachL-O, JakobsenJS, SkerljRT, BridgerGJ, SchwartzTW. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: Transfer of binding site to the CXCR3 receptor. J. Biol. Chem.279 (4), 3033–3041 (2004).
  • Fricker SP , AnastassovV, CoxJet al. Characterization of the molecular pharmacology of AMD3100: A specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem. Pharmacol.72 (5), 588–596 (2006).
  • Rosenkilde MM , GerlachL-O, HatseSet al. Molecular mechanism of action of monocyclam versus bicyclam non-peptide antagonists in the CXCR4 chemokine receptor. J. Biol. Chem.282 (37), 27354–27365 (2007).
  • Wong RSY , BodartV, MetzM, LabrecqueJ, BridgerG, FrickerSP. Comparison of the potential multiple binding modes of bicyclam, monocylam, and noncyclam small-molecule CXC chemokine receptor 4 inhibitors. Mol. Pharmacol.74 (6), 1485–1495 (2008).
  • Cox BD , ProsserAR, KatzmanBMet al. Anti-HIV small-molecule binding in the peptide subpocket of the CXCR4:CVX15 crystal structure. ChemBioChem15 (11), 1614–1620 (2014).
  • Kledal TN , RosenkildeMM, CoulinFet al. A broad-spectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus. Science277 (5332), 1656–1659 (1997).
  • Scholten DJ , CanalsM, MaussangDet al. Pharmacological modulation of chemokine receptor function. Br. J. Pharmacol.165 (6), 1617–1643 (2012).
  • Schwartz TW , FrimurerTM, HolstB, RosenkildeMM, EllingCE. Molecular mechanism of 7TM receptor activation – a global toggle switch model. Annu. Rev. Pharmacol. Toxicol.46 (1), 481–519 (2006).
  • Venkatakrishnan AJ , DeupiX, LebonG, TateCG, SchertlerGF, BabuMM. Molecular signatures of G-protein-coupled receptors. Nature494 (7436), 185–194 (2013).
  • Manglik A , KobilkaB. The role of protein dynamics in GPCR function: Insights from the β2AR and rhodopsin. Curr. Opin. Cell Biol.27, 136–143 (2014).
  • Dealwis C , FernandezEJ, ThompsonDA, SimonRJ, SianiMA, LolisE. Crystal structure of chemically synthesized [N33A] stromal cell-derived factor 1α, a potent ligand for the HIV-1 “fusin” coreceptor. Proc. Natl Acad. Sci. USA95 (12), 6941–6946 (1998).
  • Thiele S , RosenkildeMM. Interaction of chemokines with their receptors - from initial chemokine binding to receptor activating steps. Curr. Med. Chem.21 (31), 3594–3614 (2014).
  • Dror RO , PanAC, ArlowDHet al. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc. Natl Acad. Sci. USA108 (32), 13118–13123 (2011).
  • Dror RO , ArlowDH, MaragakisPet al. Activation mechanism of the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA108 (46), 18684–18689 (2011).
  • Shan J , KhelashviliG, MondalS, MehlerEL, WeinsteinH. Ligand-dependent conformations and dynamics of the serotonin 5-HT2A receptor determine its activation and membrane-driven oligomerization properties. PLoS Comput. Biol.8 (4), e1002473 (2012).
  • Kofuku Y , YoshiuraC, UedaTet al. Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4. J. Biol. Chem.284 (50), 35240–35250 (2009).
  • Kufareva I , StephensBS, HoldenLGet al. Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: Molecular modeling and experimental validation. Proc. Natl Acad. Sci. USA111 (50), E5363–E5372 (2014).
  • Xu L , LiY, SunH, LiD, HouT. Structural basis of the interactions between CXCR4 and CXCL12/SDF-1 revealed by theoretical approaches. Mol. BioSyst.9 (8), 2107–2117 (2013).
  • Tamamis P , FloudasCA. Elucidating a key component of cancer metastasis: CXCL12 (SDF-1α) binding to CXCR4. J. Chem. Inf. Model.54 (4), 1174–1188 (2014).
  • Veldkamp CT , SeibertC, PetersonFCet al. Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci. Signal.1 (37), ra4 (2008).
  • Costantini S , RaucciR, ColonnaGet al. Peptides targeting chemokine receptor CXCR4: Structural behavior and biological binding studies. J. Pept. Sci.20 (4), 270–278 (2014).
  • Klasse PJ . The molecular basis of HIV entry. Cell. Microbiol.14 (8), 1183–1192 (2012).
  • Huang C-C , TangM, ZhangM-Yet al. Structure of a V3-containing HIV-1 gp120 core. Science310 (5750), 1025–1028 (2005).
  • Huang CC , LamSN, AcharyaPet al. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science317 (5846), 1930–1934 (2007).
  • Tan Q , ZhuY, LiJet al. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science341 (6152), 1387–1390 (2013).
  • Tamamis P , FloudasCA. Molecular recognition of CXCR4 by a dual tropic HIV-1 gp120 V3 loop. Biophys. J.105 (6), 1502–1514 (2013).
  • Rosenkilde MM , SchwartzTW. GluVII:06 - a highly conserved and selective anchor point for non-peptide ligands in chemokine receptors. Curr. Top. Med. Chem.6 (13), 1319–1333 (2006).
  • Stradley SJ , RizoJ, BruchMD, StroupAN, GieraschLM. Cyclic pentapeptides as models for reverse turns: Determination of the equilibrium distribution between type I and type II conformations of Pro-Asn and Pro-Ala beta-turns. Biopolymers29 (1), 263–287 (1990).
  • Marshall GR . A hierarchical approach to peptidomimetic design. Tetrahedron49 (17), 3547–3558 (1993).
  • Demmer O , FrankAO, HagnFet al. A conformationally frozen peptoid boosts CXCR4 affinity and anti-HIV activity. Angew. Chem. Int. Ed. Engl.51 (32), 8110–8113 (2012).
  • Tamamura H , ArakiT, UedaSet al. Identification of novel low molecular weight CXCR4 antagonists by structural tuning of cyclic tetrapeptide scaffolds. J. Med. Chem.48 (9), 3280–3289 (2005).
  • Tamamura H , HiramatsuK, UedaSet al. Stereoselective synthesis of [L-Arg-L/D-3-(2-naphthyl)alanine]-type (E)-alkene dipeptide isosteres and its application to the synthesis and biological evaluation of pseudopeptide analogues of the CXCR4 antagonist FC131. J. Med. Chem.48 (2), 380–391 (2005).
  • Ueda S , OishiS, WangZXet al. Structure–activity relationships of cyclic peptide-based chemokine receptor CXCR4 antagonists: Disclosing the importance of side-chain and backbone functionalities. J. Med. Chem.50 (2), 192–198 (2007).
  • Kobayashi K , OishiS, HayashiRet al. Structure–activity relationship study of a CXC chemokine receptor type 4 antagonist, FC131, using a series of alkene dipeptide isosteres. J. Med. Chem.55 (6), 2746–2757 (2012).
  • Tamamura H , MizumotoM, HiramatsuKet al. Topochemical exploration of potent compounds using retro-enantiomer libraries of cyclic pentapeptides. Org. Biomol. Chem.2 (8), 1255–1257 (2004).
  • Narumi T , HayashiR, TomitaKet al. Synthesis and biological evaluation of selective CXCR4 antagonists containing alkene dipeptide isosteres. Org. Biomol. Chem.8 (3), 616–621 (2010).
  • Narumi T , TomitaK, InokuchiEet al. Diastereoselective synthesis of highly functionalized fluoroalkene dipeptide isosteres and its application to Fmoc-based solid-phase synthesis of a cyclic pentapeptide mimetic. Tetrahedron64 (19), 4332–4346 (2008).
  • Inokuchi E , OishiS, KuboTet al. Potent CXCR4 antagonists containing amidine type peptide bond isosteres. ACS Med. Chem. Lett.2 (6), 477–480 (2011).
  • Tanaka T , NomuraW, NarumiTet al. Structure–activity relationship study on artificial CXCR4 ligands possessing the cyclic pentapeptide scaffold: The exploration of amino acid residues of pentapeptides by substitutions of several aromatic amino acids. Org. Biomol. Chem.7 (18), 3805–3809 (2009).
  • Mungalpara J , ThieleS, EriksenØ, EksteenJ, RosenkildeMM, Våben⊘J. Rational design of conformationally constrained cyclopentapeptide antagonists for C-X-C chemokine receptor 4 (CXCR4). J. Med. Chem.55 (22), 10287–10291 (2012).
  • Tamamura H , EsakaA, OgawaTet al. Structure-activity relationship studies on CXCR4 antagonists having cyclic pentapeptide scaffolds. Org. Biomol. Chem.3 (24), 4392–4394 (2005).
  • Mungalpara J , ZachariassenZG, ThieleS, RosenkildeMM, Våben⊘J. Structure–activity relationship studies of the aromatic positions in cyclopentapeptide CXCR4 antagonists. Org. Biomol. Chem.11, 8202–8208 (2013).
  • Tanaka T , TsutsumiH, NomuraWet al. Structure–activity relationship study of CXCR4 antagonists bearing the cyclic pentapeptide scaffold: Identification of the new pharmacophore. Org. Biomol. Chem.6 (23), 4374–4377 (2008).
  • Våben⊘ J , NikiforovichGV, MarshallGR. A minimalistic 3D pharmacophore model for cyclopentapeptide CXCR4 antagonists. Biopolymers84 (5), 459–471 (2006).
  • Demmer O , DijkgraafI, SchumacherUet al. Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4. J. Med. Chem.54 (21), 7648–7662 (2011).
  • Yoshikawa Y , KobayashiK, OishiS, FujiiN, FuruyaT. Molecular modeling study of cyclic pentapeptide CXCR4 antagonists: New insight into CXCR4-FC131 interactions. Bioorg. Med. Chem. Lett.22 (6), 2146–2150 (2012).
  • Thiele S , MungalparaJ, SteenA, RosenkildeMM, Våben⊘J. Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis. Br. J. Pharmacol.171 (23), 5313–5329 (2014).
  • Tamamura H , TsutsumiH, MasunoHet al. Development of a linear type of low molecular weight CXCR4 antagonists based on T140 analogs. Org. Biomol. Chem.4 (12), 2354–2357 (2006).
  • Ichiyama K , Yokoyama-KumakuraS, TanakaYet al. A duodenally absorbable CXC chemokine receptor 4 antagonist, KRH-1636, exhibits a potent and selective anti-HIV-1 activity. Proc. Natl Acad. Sci. USA100 (7), 4185–4190 (2003).
  • Tamamura H , HiramatsuK, MizumotoMet al. Enhancement of the T140-based pharmacophores leads to the development of more potent and bio-stable CXCR4 antagonists. Org. Biomol. Chem.1 (21), 3663–3669 (2003).
  • Narumi T , TanakaT, HashimotoCet al. Pharmacophore-based small molecule CXCR4 ligands. Bioorg. Med. Chem. Lett.22 (12), 4169–4172 (2012).
  • Cluzeau J , OishiS, OhnoHet al. Design and synthesis of all diastereomers of cyclic pseudo-dipeptides as mimics of cyclic CXCR4 pentapeptide antagonists. Org. Biomol. Chem.5 (12), 1915–1923 (2007).
  • Garland Marshall: US20050192272 (2005).
  • Niida A , TanigakiH, InokuchiEet al. Stereoselective synthesis of 3,6-disubstituted-3,6-dihydropyridin-2-ones as potential diketopiperazine mimetics using organocopper-mediated anti-SN2′ reactions and their use in the preparation of low-molecule CXCR4 antagonists. J. Org. Chem.71 (10), 3942–3951 (2006).
  • Ueda S , KatoM, InukiSet al. Identification of novel non-peptide CXCR4 antagonists by ligand-based design approach. Bioorg. Med. Chem. Lett.18 (14), 4124–4129 (2008).
  • Zachariassen ZG , ThieleS, BergEAet al. Design, synthesis, and biological evaluation of scaffold-based tripeptidomimetic antagonists for CXC chemokine receptor 4 (CXCR4). Biorg. Med. Chem.22 (17), 4759–4769 (2014).
  • Murakami T , KumakuraS, YamazakiTet al. The novel CXCR4 antagonist KRH-3955 is an orally bioavailable and extremely potent inhibitor of human immunodeficiency virus type 1 infection: Comparative studies with AMD3100. Antimicrob. Agents Chemother.53 (7), 2940–2948 (2009).
  • Iwasaki Y , AkariH, MurakamiTet al. Efficient inhibition of SDF-1α-mediated chemotaxis and HIV-1 infection by novel CXCR4 antagonists. Cancer Sci.100 (4), 778–781 (2009).
  • Mosley CA , WilsonLJ, WisemanJM, SkudlarekJW, LiottaDC. Recent patents regarding the discovery of small molecule CXCR4 antagonists. Expert Opin. Ther. Pat.19 (1), 23–38 (2009).
  • Portella L , VitaleR, De LucaSet al. Preclinical development of a novel class of CXCR4 antagonist impairing solid tumors growth and metastases. PloS ONE8 (9), e74548 (2013).
  • Cojoc M , PeitzschC, TrautmannF, PolishchukL, TelegeevGD, DubrovskaA. Emerging targets in cancer management: Role of the CXCL12/CXCR4 axis. OncoTargets Ther.6, 1347 (2013).
  • Chatterjee S , Behnam AzadB, NimmagaddaS. The intricate role of CXCR4 in cancer. Adv. Cancer Res.124, 31–82 (2014).
  • Mysinger MM , WeissDR, ZiarekJJet al. Structure-based ligand discovery for the protein-protein interface of chemokine receptor CXCR4. Proc. Natl Acad. Sci. USA109 (14), 5517–5522 (2012).
  • Vitale RM , GattiM, CarboneMet al. Minimalist hybrid ligand/receptor-based pharmacophore model for CXCR4 applied to a small-library of marine natural products led to the identification of phidianidine A as a new CXCR4 ligand exhibiting antagonist activity. ACS Chem. Biol.8 (12), 2762–2770 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.