180
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hologram Quantitative Structure–Activity Relationship and Comparative Molecular Interaction Field Analysis of Aminothiazole and Thiazolesulfonamide as Reversible LSD1 Inhibitors

, , , &
Pages 1381-1394 | Published online: 31 Jul 2015

References

  • Mosammaparast N , ShiY. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu. Rev. Biochem.79, 155–179 (2010).
  • Crea F , SunL, MaiAet al. The emerging role of histone lysine demethylases in prostate cancer. Mol. Cancer11, 52 (2012).
  • Hojfeldt JW , AggerK, HelinK. Histone lysine demethylases as targets for anticancer therapy. Nat. Rev. Drug Discov.12 (12), 917–930 (2013).
  • Schmidt DMZ , MccaffertyDG. Trans-2-phenylcyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1. Biochemistry46 (14), 4408–4416 (2007).
  • Schenk T , ChenWC, GollnerSet al. Inhibition of the LSD1 (KDM1a) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat. Med.18 (4), 605–611 (2012).
  • Simó-Riudalbas L , EstellerM. Targeting the histone orthography of cancer: drugs for writers, erasers and readers. Br. J. Pharmacol. doi:10.1111/bph.12844 (2014) ( Epub ahead of print).
  • Thinnes CC , EnglandKS, KawamuraA, ChowdhuryR, SchofieldCJ, HopkinsonRJ. Targeting histone lysine demethylases – progress, challenges, and the future. Biochim. Biophys. Acta839 (12), 1416–1432 (2014).
  • Prusevich P , KalinJH, MingSAet al. A selective phenelzine analogue inhibitor of histone demethylase LSD1. ACS Chem. Biol.9 (6), 1284–1293 (2014).
  • Kutz CJ , HolshouserSL, MarrowEA, WosterPM. 3,5-diamino-1,2,4-triazoles as a novel scaffold for potent, reversible LSD1 (KDM1a) inhibitors. MedChemComm5 (12), 1863–1870 (2014).
  • Hitchin JR , BlaggJ, BurkeRet al. Development and evaluation of selective, reversible LSD1 inhibitors derived from fragments. MedChemComm4 (11), 1513–1522 (2013).
  • Tortorici M , BorrelloMT, TardugnoMet al. Protein recognition by short peptide reversible inhibitors of the chromatin-modifying LSD1/corest lysine demethylase. ACS Chem. Biol.8 (8), 1677–1682 (2013).
  • Robertson JC , HurleyNC, TortoriciMet al. Expanding the druggable space of the LSD1/corest epigenetic target: new potential binding regions for drug-like molecules, peptides, protein partners, and chromatin. PLoS Comput. Biol.9 (7), e1003158 (2013).
  • Vellore N , BaronR. Molecular dynamics simulations indicate an induced-fit mechanism for LSD1/corest-h3-histone molecular recognition. BMC Biophys.6 (1), 15 (2013).
  • Zhou C , KangD, XuY, ZhangL, ZhaX. Identification of novel selective lysine specific demethylase 1 (LSD1) inhibitors using a pharmacophore based virtual screening combined with docking. Chem. Biol. Drug Des. doi:10.1111/cbdd.12461 (2014) ( Epub ahead of print).
  • Gertrudes JC , MaltarolloVG, SilvaRA, OliveiraPR, HonorioKM, Da SilvaAB. Machine learning techniques and drug design. Curr. Med. Chem.19 (25), 4289–4297 (2012).
  • Cherkasov A , MuratovEN, FourchesDet al. QSAR modeling: where have you been? where are you going to? J. Med. Chem. 57 (12), 4977–5010 (2014).
  • Arroio A , HonórioKM, SilvaABFD. Propriedades químico-quânticas empregadas em estudos das relações estrutura-atividade. Quim. Nova33, 694–699 (2010).
  • Polanski J . Receptor dependent multidimensional qsar for modeling drug–receptor interactions. Curr. Med. Chem.16 (25), 3243–3257 (2009).
  • Santos-Filho OA , HopfingerAJ, CherkasovA, De AlencastroRB. The receptor-dependent QSAR paradigm: an overview of the current state of the art. Med. Chem.5 (4), 359–366 (2009).
  • Dong X , ZhengW. Receptor-dependent QSAR methods. In : In Silico Drug Discovery And Design. Future Science Ltd, London, UK, 108–119 (2013).
  • Maltarollo VG , GertrudesJC, OliveiraPR, HonorioKM. Applying machine learning techniques for ADME-Tox prediction: a review. Expert Opin. Drug Metab. Toxicol.11 (2), 259–271 (2015).
  • Speck-Planche A , LuanF, CordeiroMN. Abelson tyrosine-protein kinase 1 as principal target for drug discovery against leukemias. Role of the current computer-aided drug design methodologies. Curr. Top. Med. Chem.12 (24), 2745–2762 (2012).
  • Speck-Planche A , KleandrovaVV, LuanF, CordeiroMN. Chemoinformatics in anti-cancer chemotherapy: multi-target QSAR model for the in silico discovery of anti-breast cancer agents. Eur. J. Pharm. Sci.47 (1), 273–279 (2012).
  • Speck-Planche A , KleandrovaVV, LuanF, CordeiroMN. Chemoinformatics in multi-target drug discovery for anti-cancer therapy: in silico design of potent and versatile anti-brain tumor agents. Anticancer Agents Med. Chem.12 (6), 678–685 (2012).
  • Speck-Planche A , KleandrovaVV, LuanF, CordeiroMN. Rational drug design for anti-cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents. Bioorg. Med. Chem.20 (15), 4848–4855 (2012).
  • Speck-Planche A , KleandrovaVV, LuanF, CordeiroMN. Unified multi-target approach for the rational in silico design of anti-bladder cancer agents. Anticancer Agents Med. Chem.13 (5), 791–800 (2013).
  • Marzaro G , ChilinA, GuiottoAet al. Using the tops-mode approach to fit multi-target QSAR models for tyrosine kinases inhibitors. Eur. J. Med. Chem.46 (6), 2185–2192 (2011).
  • Mimasu S , SengokuT, FukuzawaS, UmeharaT, YokoyamaS. Crystal structure of histone demethylase LSD1 and tranylcypromine at 2.25 A. Biochem. Biophys. Res. Commun.366 (1), 15–22 (2008).
  • Yang M , CulhaneJC, SzewczukLMet al. Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine. Biochemistry46 (27), 8058–8065 (2007).
  • Yang M , CulhaneJC, SzewczukLMet al. Structural basis of histone demethylation by LSD1 revealed by suicide inactivation. Nat. Struct. Mol. Biol.14 (6), 535–539 (2007).
  • Yang M , GockeCB, LuoXet al. Structural basis for corest-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol. Cell23 (3), 377–387 (2006).
  • Stavropoulos P , BlobelG, HoelzA. Crystal structure and mechanism of human lysine-specific demethylase-1. Nat. Struct. Mol. Biol.13 (7), 626–632 (2006).
  • RStudio: Integrated development environment for R (Version 0.96.122) computer software. www.rstudio.org/.
  • Kennard RW , StoneLA. Computer aided design of experiments. Technometrics11 (1), 137–148 (1969).
  • Martin TM , HartenP, YoungDMet al. Does rational selection of training and test sets improve the outcome of QSAR modeling? J. Chem. Inf. Model. 52 (10), 2570–2578 (2012).
  • Tripos. Sybyl x 2.0. (2010). http://tripos.com/index.php?family=modules,General.DownloadPortal,Browse&product=SYBYL.
  • Hawkins PCD , SkillmanAG, WarrenGL, EllingsonBA, StahlMT. Conformer generation with omega: algorithm and validation using high quality structures from the protein databank and cambridge structural database. J. Chem. Inf. Model.50 (4), 572–584 (2010).
  • Hawkins PCD , SkillmanAG, WarrenGL, EllingsonBA, StahlMT. Omega 2.5.1.4. www.eyesopen.com.
  • Hawkins PCD , SkillmanAG, NichollsA. Comparison of shape-matching and docking as virtual screening tools. J. Med. Chem.50 (1), 74–82 (2006).
  • Rocs 3.2.0.4. www.eyesopen.com.
  • Stewart JJP . Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem.10 (2), 209–220 (1989).
  • Stewart JJP . Optimization of parameters for semiempirical methods II. Applications. J. Comput. Chem.10 (2), 221–264 (1989).
  • Lowis DR . Hqsar: a new, highly predictive QSAR technique. Tripos Technical Notes1 (5), 1–10 (1997).
  • Seel M , TurnerDB, WillettP. Effect of parameter variations on the effectiveness of HQSAR analyses. Quantitative Structure–Activity Relationships18 (3), 245–252 (1999).
  • Cramer RD , PattersonDE, BunceJD. Comparative molecular field analysis (CoMFA) I. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.110 (18), 5959–5967 (1988).
  • Cronin MTD , SchultzTW. Pitfalls in QSAR. J. Mol. Struct.622 (1–2), 39–51 (2003).
  • Gaudio AC , ZandonadeE. Proposition, validation and analysis of QSAR models. Quim. Nova24 (5), 658–671 (2001).
  • Golbraikh A , WangX, ZhuH, TropshaA. Predictive QSAR modeling: methods and applications in drug discovery and chemical risk assessment. In : Handbook of computational chemistry. LeszczynskiJ ( Ed.). Springer, The Netherlands, 1309–1342 (2012).
  • Scior T , Medina-FrancoJL, DoQT, Martinez-MayorgaK, Yunes RojasJA, BernardP. How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr. Med. Chem.16 (32), 4297–4313 (2009).
  • Araujo SC , MaltarolloVG, HonorioKM. Computational studies of TGF-βRI (ALK-5) inhibitors: analysis of the binding interactions between ligand–receptor using 2D and 3D techniques. Eur. J. Pharm. Sci.49 (4), 542–549 (2013).
  • Garcia TS , SilvaDC, GertrudesJC, MaltarolloVG, HonorioKM. Molecular features related to the binding mode of ppardelta agonists from QSAR and docking analyses. SAR QSAR Environ. Res.24 (2), 157–173 (2013).
  • Maltarollo VG , SilvaDC, HonorioKM. Advanced QSAR studies on PPAR delta ligands related to metabolic diseases. J. Braz. Chem. Soc.23 (1), 85–95 (2012).
  • Trossini GHG , GuidoRVC, OlivaG, FerreiraEI, AndricopuloAD. Quantitative structure–activity relationships for a series of inhibitors of cruzain from trypanosoma cruzi: Molecular modeling, CoMFA and CoMSIA studies. J. Mol. Graph. Model.28 (1), 3–11 (2009).
  • Trossini G , MaltarolloV, SchmidtT. Hologram QSAR studies of antiprotozoal activities of sesquiterpene lactones. Molecules19 (7), 10546–10562 (2014).
  • Honorio KM , GarrattRC, PolikatpovI, AndricopuloAD. 3D QSAR comparative molecular field analysis on nonsteroidal farnesoid X receptor activators. J. Mol. Graph. Model.25 (6), 921–927 (2007).
  • Moda TL , MontanariCA, AndricopuloAD. Hologram QSAR model for the prediction of human oral bioavailability. Biorg. Med. Chem.15 (24), 7738–7745 (2007).
  • Moda TL , AndricopuloAD. Consensus hologram QSAR modeling for the prediction of human intestinal absorption. Bioorg. Med. Chem. Lett.22 (8), 2889–2893 (2012).
  • Golbraikh A , TropshaA. Beware of q(2)!J. Mol. Graph. Model.20 (4), 269–276 (2002).
  • Pratim Roy P , PaulS, MitraI, RoyK. On two novel parameters for validation of predictive QSAR models. Molecules14 (5), 1660–1701 (2009).
  • Roy K , MitraI, KarS, OjhaPK, DasRN, KabirH. Comparative studies on some metrics for external validation of QSPR models. J. Chem. Inf. Model.52 (2), 396–408 (2011).
  • Ojha PK , MitraI, DasRN, RoyK. Further exploring rm2 metrics for validation of QSPR models. Chemom. Intell. Lab. Syst.107 (1), 194–205 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.