436
Views
0
CrossRef citations to date
0
Altmetric
Review

Biological Characteristics and Agonists of GPR120 (FFAR4) Receptor: The Present Status of Research

, &
Pages 1457-1468 | Published online: 31 Jul 2015

References

  • Fredriksson R , HöglundPJ, GloriamDEI, LagerströmMC, SchiöthHB. Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett.554 (3), 381–388 (2003).
  • Ichimura A , HirasawaA, Poulain-GodefroyOet al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature483 (7389), 350–354 (2012).
  • Campagne F , WeinsteinH. Schematic representation of residue-based protein context-dependent data: an application to transmembrane proteins. J. Mol. Graph. Model.17 (3–4), 207–213 (1999).
  • Watson SJ , BrownAJ, HollidayND. Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol. Pharmacol.81 (5), 631–642 (2012).
  • Moore K , ZhangQ, MurgoloN, HostedT, DuffyR. Cloning, expression, and pharmacological characterization of the GPR120 free fatty acid receptor from cynomolgus monkey: comparison with human GPR120 splice variants. Comp. Biochem. Physiol. B Biochem. Mol. Biol.154 (4), 419–426 (2009).
  • Burns RN , MoniriNH. Agonism with the omega-3 fatty acids alpha-linolenic acid and docosahexaenoic acid mediates phosphorylation of both the short and long isoforms of the human GPR120 receptor. Biochem. Biophys. Res. Commun.396 (4), 1030–1035 (2010).
  • Notredame C , HigginsDG, HeringaJ. T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol.302 (1), 205–217 (2000).
  • Gouet P , RobertX, CourcelleE. Espript/endscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res.31 (13), 3320–3323 (2003).
  • Shimpukade B , HudsonBD, HovgaardCK, MilliganG, UlvenT. Discovery of a potent and selective GPR120 agonist. J. Med. Chem.55 (9), 4511–4515 (2012).
  • Halder S , KumarS, SharmaR. The therapeutic potential of GPR120: a patent review. Expert Opin. Ther. Pat.23 (12), 1581–1590 (2013).
  • Tremblay HHT , HirasawaA, TsujimotoG, MarsaultE. Exploring the chemical space of GPR40 and GPR120 with small molecules. Presented at : 245th ACS National Meeting & Exposition. New Orleans, LA, USA, 7–11 April 2013 ( Abstract MEDI 421).
  • Sparks SM , ChenG, CollinsJLet al. Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120). Bioorg. Med. Chem. Lett.24 (14), 3100–3103 (2014).
  • BANYU PHARMACEUTICAL CO. LTD: US0130559 (2010).
  • BANYU PHARMACEUTICAL CO. LTD: WO104195 (2010).
  • METABOLEX INC. WO048207 (2010).
  • METABOLEX INC: WO080537 (2010).
  • METABOLEX INC.: WO159297 (2011).
  • IRM LLC: WO008831 (2010).
  • KYOTO UNIVERSITY: JP153679 (2012).
  • KINDEX THERAPEUTICS LLC: US0217781 (2013).
  • Hirasawa A , TsumayaK, AwajiTet al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med.11 (1), 90–94 (2005).
  • Katsuma S , HataeN, YanoTet al. Free fatty acids inhibit serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line stc-1. J. Biol. Chem.280 (20), 19507–19515 (2005).
  • Oh DY , TalukdarS, BaeEJet al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell142 (5), 687–698 (2010).
  • Miyauchi S , HirasawaA, IgaTet al. Distribution and regulation of protein expression of the free fatty acid receptor GPR120. Naunyn Schmiedebergs Arch. Pharmacol.379 (4), 427–434 (2009).
  • Taneera J , LangS, SharmaAet al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab.16 (1), 122–134 (2012).
  • Suckow AT , PolidoriD, YanWet al. Alteration of the glucagon axis in GPR120 (FFAR4) knockout mice: a role for GPR120 in glucagon secretion. J. Biol. Chem.289 (22), 15751–15763 (2014).
  • Stone VM , DhayalS, BrocklehurstKJet al. GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of langerhans. Diabetologia57 (6), 1182–1191 (2014).
  • Matsumura S , MizushigeT, YonedaTet al. GPR expression in the rat taste bud relating to fatty acid sensing. Biomed. Res.28 (1), 49–55 (2007).
  • Lu X , ZhaoX, FengJet al. Postprandial inhibition of gastric ghrelin secretion by long-chain fatty acid through GPR120 in isolated gastric ghrelin cells and mice. Am. J. Physiol. Gastrointest. Liver Physiol.303 (3), G367–376 (2012).
  • Sykaras AG , DemenisC, CaseRM, MclaughlinJT, SmithCP. Duodenal enteroendocrine I-cells contain mrna transcripts encoding key endocannabinoid and fatty acid receptors. PLoS ONE7 (8), e42373 (2012).
  • Parker HE , HabibAM, RogersGJ, GribbleFM, ReimannF. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia52 (2), 289–298 (2009).
  • Cornish J , MacgibbonA, LinJMet al. Modulation of osteoclastogenesis by fatty acids. Endocrinology149 (11), 5688–5695 (2008).
  • Reber SO , BirkenederL, VeenemaAHet al. Adrenal insufficiency and colonic inflammation after a novel chronic psycho-social stress paradigm in mice: implications and mechanisms. Endocrinology148 (2), 670–682 (2007).
  • Janssen S , LaermansJ, IwakuraH, TackJ, DepoortereI. Sensing of fatty acids for octanoylation of ghrelin involves a gustatory G-protein. PLoS ONE7 (6), e40168 (2012).
  • Soto-Guzman A , RobledoT, Lopez-PerezM, SalazarEP. Oleic acid induces ERK1/2 activation and AP-1 DNA binding activity through a mechanism involving SRC kinase and EGFR transactivation in breast cancer cells. Mol. Cell. Endocrinol.294 (1–2), 81–91 (2008).
  • Whalley NM , PritchardLE, SmithDM, WhiteA. Processing of proglucagon to GLP-1 in pancreatic alpha-cells: is this a paracrine mechanism enabling GLP-1 to act on beta-cells?J. Endocrinol.211 (1), 99–106 (2011).
  • Morgan NG , DhayalS. G-protein coupled receptors mediating long chain fatty acid signalling in the pancreatic beta-cell. Biochem. Pharmacol.78 (12), 1419–1427 (2009).
  • Navarro-Tito N , RobledoT, SalazarEP. Arachidonic acid promotes FAK activation and migration in MDA-MB-231 breast cancer cells. Exp. Cell Res.314 (18), 3340–3355 (2008).
  • Matsumura S , EguchiA, MizushigeTet al. Colocalization of GPR120 with phospholipase-Cβ2 and α-gustducin in the taste bud cells in mice. Neurosci. Lett.450 (2), 186–190 (2009).
  • Cartoni C , YasumatsuK, OhkuriTet al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci.30 (25), 8376–8382 (2010).
  • Sakata I , SakaiT. Ghrelin cells in the gastrointestinal tract. Int. J. Pept. doi:10.1155/2010/945056 (2010).
  • Dickson SL , EgeciogluE, LandgrenS, SkibickaKP, EngelJA, JerlhagE. The role of the central ghrelin system in reward from food and chemical drugs. Mol. Cell. Endocrinol.340 (1), 80–87 (2011).
  • Gong Z1 , YoshimuraM, AizawaS. G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro. Am. J. Physiol. Endocrinol. Metab.306 (1), E28–E35 (2014).
  • Liddle RA . Cholecystokinin cells. Annu. Rev. Physiol.59, 221–242 (1997).
  • Mclaughlin JT , LomaxRB, HallL, DockrayGJ, ThompsonDG, WarhurstG. Fatty acids stimulate cholecystokinin secretion via an acyl chain length-specific, ca2+-dependent mechanism in the enteroendocrine cell line STC-1. J. Physiol.513 (Pt 1), 11–18 (1998).
  • Tanaka T , KatsumaS, AdachiT, KoshimizuTA, HirasawaA, TsujimotoG. Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch. Pharmacol.377 (4–6), 523–527 (2008).
  • Shah BP , LiuP, YuT, HansenDR, GilbertsonTA. TRPM5 is critical for linoleic acid-induced CCK secretion from the enteroendocrine cell line, STC-1. Am. J. Physiol. Cell Physiol.302 (1), C210–C219 (2012).
  • Tanaka T , YanoT, AdachiT, KoshimizuTA, HirasawaA, TsujimotoG. Cloning and characterization of the rat free fatty acid receptor gpr120: in vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic beta cells. Naunyn Schmiedebergs Arch. Pharmacol.377 (4–6), 515–522 (2008).
  • Cammisotto PG , BendayanM. Leptin secretion by white adipose tissue and gastric mucosa. Histol. Histopathol.22 (2), 199–210 (2007).
  • Gotoh C , HongYH, IgaTet al. The regulation of adipogenesis through GPR120. Biochem. Biophys. Res. Commun.354 (2), 591–597 (2007).
  • Cohen P . The twentieth century struggle to decipher insulin signalling. Nat. Rev. Mol. Cell Biol.7 (11), 867–873 (2006).
  • Moran BM , Abdel-WahabYH, FlattPR, MckillopAM. Evaluation of the insulin releasing and glucose lowering effects of GPR120 activation in pancreatic beta cells. Diabetes Obes. Metab.16 (11), 1128–1139 (2014).
  • Kazakos K . Incretin effect: GLP-1, GIP, DPP4. Diabetes Res. Clin. Pract.93, S32–S36 (2011).
  • Seino Y , YabeD. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: incretin actions beyond the pancreas. J. Diabetes Invest.4 (2), 108–130 (2013).
  • Seino Y , FukushimaM, YabeD. GIP and GLP-1, the two incretin hormones: similarities and differences. J. Diabetes Invest.1 (1–2), 8–23 (2010).
  • Iwasaki K , HaradaN, SasakiKet al. Free fatty acid receptor GPR120 is highly expressed in enteroendocrine K cells of the upper small intestine and has a critical role in GIP secretion after fat ingestion. Endocrinology156 (3), 837–846 (2015).
  • Tack CJ , StienstraR, JoostenLA, NeteaMG. Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. Immunol. Rev.249 (1), 239–252 (2012).
  • Shi H , KokoevaMV, InouyeK, TzameliI, YinH, FlierJS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest.116 (11), 3015–3025 (2006).
  • Pal D , DasguptaS, KunduRet al. Fetuin-a acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med.18 (8), 1279–1285 (2012).
  • Lesley G , ElliesAJ, JerroldM Olefsky. Obesity, inflammation, and insulin resistance. In : Obesity, inflammation and cancer. DannenbergAJ, BergerNA ( Eds). Springer, NY, USA (2013).
  • Renier G , SkameneE, DesanctisJ, RadziochD. Dietary n-3 polyunsaturated fatty acids prevent the development of atherosclerotic lesions in mice. Modulation of macrophage secretory activities. Arterioscler. Thromb.13 (10), 1515–1524 (1993).
  • Meydani SN , EndresS, WoodsMMet al. Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. J. Nutr.121 (4), 547–555 (1991).
  • Cintra DE , RopelleER, MoraesJCet al. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS ONE7 (1), e30571 (2012).
  • Wellhauser L , BelshamDD. Activation of the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory actions in immortalized hypothalamic neurons. J. Neuroinflammation11, 60 (2014).
  • Raptis DA , LimaniP, JangJHet al. GPR120 on kupffer cells mediates hepatoprotective effects of ω3-fatty acids. J. Hepatol.60 (3), 625–632 (2014).
  • Baro L , HermosoJC, NunezMC, Jimenez-RiosJA, GilA. Abnormalities in plasma and red blood cell fatty acid profiles of patients with colorectal cancer. Br. J. Cancer77 (11), 1978–1983 (1998).
  • Anti M , MarraG, ArmelaoFet al. Effect of omega-3 fatty acids on rectal mucosal cell proliferation in subjects at risk for colon cancer. Gastroenterology103 (3), 883–891 (1992).
  • Chung H , LeeYS, MayoralRet al. Omega-3 fatty acids reduce obesity-induced tumor progression independent of GPR120 in a mouse model of postmenopausal breast cancer. Oncogene doi:10.1038/onc.2014.283 (2014) ( Epub ahead of print).
  • Wu Q , WangH, ZhaoXet al. Identification of G-protein-coupled receptor 120 as a tumor-promoting receptor that induces angiogenesis and migration in human colorectal carcinoma. Oncogene32 (49), 5541–5550 (2013).
  • Jones RM , LeonardJN, BuzardDJ, LehmannJ. GPR119 agonists for the treatment of Type 2 diabetes. Expert Opin. Ther. Pat.19 (10), 1339–1359 (2009).
  • Itoh Y , KawamataY, HaradaMet al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature422 (6928), 173–176 (2003).
  • Chu ZL , CarrollC, ChenRet al. N-oleoyldopamine enhances glucose homeostasis through the activation of GPR119. Mol. Endocrinol.24 (1), 161–170 (2010).
  • Edfalk S , StenebergP, EdlundH. GPR40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes57 (9), 2280–2287 (2008).
  • Lyon CJ , LawRE, HsuehWA. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology144 (6), 2195–2200 (2003).
  • Tomita T , MasuzakiH, IwakuraHet al. Expression of the gene for a membrane-bound fatty acid receptor in the pancreas and islet cell tumours in humans: evidence for GPR40 expression in pancreatic beta cells and implications for insulin secretion. Diabetologia49 (5), 962–968 (2006).
  • Itoh Y , KawamataY, HaradaMet al. Free fatty acids regulate insulin secretion from pancreatic [beta] cells through GPR40. Nature422 (6928), 173–176 (2003).
  • Mobraten K , HaugTM, KleivelandCR, LeaT. Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signalling events, but with different kinetics and intensity in Caco-2 cells. Lipids Health Dis.12, 101 (2013).
  • Briscoe CP , PeatAJ, MckeownSCet al. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br. J. Pharmacol.148 (5), 619–628 (2006).
  • Suzuki T , IgariS, HirasawaAet al. Identification of G protein-coupled receptor 120-selective agonists derived from PPARgamma agonists. J. Med. Chem.51 (23), 7640–7644 (2008).
  • Hara T , HirasawaA, SunQet al. Novel selective ligands for free fatty acid receptors GPR120 and GPR40. Naunyn Schmiedebergs Arch. Pharmacol.380 (3), 247–255 (2009).
  • Sun Q , HirasawaA, HaraTet al. Structure-activity relationships of GPR120 agonists based on a docking simulation. Mol. Pharmacol.78 (5), 804–810 (2010).
  • Hudson BD , ShimpukadeB, MackenzieAEet al. The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol. Pharmacol.84 (5), 710–725 (2013).
  • Hudson BD , ShimpukadeB, MilliganG, UlvenT. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). J. Biol. Chem.289 (29), 20345–20358 (2014).
  • IRM LLC: WO103500 (2008).
  • SYDDANSK UNIVERSITET: WO185766 (2013).
  • SYDDANSK UNIVERSITET: WO139341 (2013).
  • LG LIFE SCIENCES LTD: WO069963 (2014).
  • Kenakin T , ChristopoulosA. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov.12 (3), 205–216 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.