2,052
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Injectable Liposomal Formulations of Opiorphin As a New Therapeutic Strategy in Pain Management

, , , , &
Article: FSO2 | Published online: 20 Mar 2015

References

  • McQuay H . Opioids in pain management. Lancet353, 2229–2232 (1999).
  • Mordarski S , LysenkoL, GerberH, ZietekM, GredesT, DominiakM. The effect of treatment with fentanyl patches on pain relief and improvement in overall daily functioning in patients with postherpetic neuralgia. J. Physiol. Pharmacol.60, 31–35 (2009).
  • Schmidt CO , SchweikertbB, WenigbCMet al. Modelling the prevalence and cost of back pain with neuropathic components in the general population. Eur. J. Pain.13, 1030–1035 (2009).
  • Wisner A , DufourE, MessaoudiMet al. Human Opiorphin, a natural antinociceptive modulator of opioid-dependent pathways. Proc. Natl Acad. Sci. USA103, 17979–17984 (2006).
  • Tian X , ChenJ, XiongW, HeT, ChenQ. Effects and underlying mechanisms of human opiorphin on colonic motility and nociception in mice. Peptides30, 1348–1355 (2009).
  • Rougeot C , RobertF, MenzL, BissonJF, MessaoudiM. Systemically active human opiorphin is a potent yet non-addictive analgesic without drug tolerance effects. J. Physiol. Pharmacol.61, 483–490 (2010).
  • Rosa M , ArsequellG, RougeotCet al. Structure-activity relationship study of opiorphin, a human dual ectopeptidase inhibitor with antinociceptive properties. J. Med. Chem.55, 1181–1188 (2012).
  • Rougeot C . Opiorphin peptide derivatives as potent inhibitors of enkephalin-degrading ectopeptidases. Internationalapplication : PCT/EP2009/054171 (edited on 15 October 2009) WO/2009/124948 (2009).
  • Le Guen S , Mas NietoM, CanestrelliCet al. Pain management by a new series of dual inhibitors of enkephalin degrading enzymes: long lasting antinociceptive properties and potentiation by CCK2 antagonist or methadone. Pain104, 139–148 (2003).
  • Popik P , KamyszE, KreczkoJ, WróbelM. Human opiorphin: the lack of physiological dependence, tolerance to antinociceptive effects and abuse liability in laboratory mice. Behav. Brain Res.213, 88–93 (2010).
  • Thanawala V , KadamVJ, GhoshR. Enkephalinase inhibitors: potential agents for the management of pain. Curr. Drug Targets10, 887–889 (2008).
  • Javelot H , MessaoudiM, GarnierS, RougeotC. Human opiorphin is a naturally occurring antidepressant acting selectively on enkephalin-dependent delta-opioid pathways. J. Physiol. Pharmacol.61, 355–362 (2010).
  • Yang QZ , LuSS, TianAM, YangAM, GeWW, ChenQ. The antidepressant-like effect of human opiorphin via opioid-dependent pathways in mice. Neurosci. Lett.489, 131–135 (2011).
  • Bogeas A , DufourE, BissonJF, MessaoudiM, RougeotC. Structure-activity relationship study and function-based peptidomimetic design of human opiorphin with improved bioavailability property and unaltered analgesic activity. Biochem. Pharmacol.2, doi: 10.4172/2167-0501, 122 (2013).
  • Hua S , WuSY. The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol.4, 1–6 (2013).
  • Mishra B , PatelBB, TiwariS. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine6, 9–24 (2010).
  • Patel M , SoutoEB, SinghKK. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticle. Expert Opin. Drug Deliv.10, 889–905 (2013).
  • Martin-Banderas L , HolgadoMA, VeneroJL, Alvarez-FuentesJ, Fernàdez-AréaloM. Nanostructures for drug delivery to the brain. Curr. Med. Chem.148, 5303–5321 (2011).
  • Shah L , KulkamiP, FerrisP, AmijiM. Analgesic efficacy and safety of DALDA peptide analog delivery to the brain using oil in water nanoemulsion formulation. Pharm. Res.31, 2724–2734 (2014).
  • Lai F , FaddaAM, SinicoC. Liposomes for brain delivery. Expert Opin. Drug Deliv.10, 1003–1022 (2013).
  • Kim JY , ChoiWI, KimYH, TaeG. Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials34, 1170–1179 (2013).
  • Maurer N , FenskeDB, CullisPR. Developments in liposomal drug delivery systems. Expert Opin. Biol. Ther.1, 923–947 (2001).
  • Samad A , SultanaY, AqilM. Liposomal drug delivery systems: an update review. Curr. Drug Deliv.4, 297–305 (2007).
  • Fenske DB , ChonnA, CullisPR. Liposomal nanomedicines: an emerging field. Toxicol. Pathol.36, 21–29 (2008).
  • Laouini A , Jaafar-MaalejC, Limayem BlouzaI, SfarS, CharcossetC, FessiH. Preparation, characterization and applications of liposomes: state of the art. J. Colloid Sci. Biotechnol.1, 147–168 (2012).
  • Sipai Altaf Bhai M , VandanaY, MamathaY, PrasanthVV. Liposomes: an overview. JPSI1, 13–21 (2012).
  • Vanniasinghe AS , BenderV, ManoliosN. The potential of liposomal drug delivery for the treatment of inflammatory arthritis. Semin. Arthritis Rheum.39, 182–196 (2009).
  • Akbarzadeh A , Rezaei-SadabadyR, DavaranSet al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett.8, 2–9 (2013).
  • Immordino ML , DosioF, CattelL. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine1, 297–315 (2006).
  • Chan WC , WhitePD. Fmoc solid phase peptide synthesis. In: A Practical Approach.ChanWC, WhitePD ( Eds). Oxford University Press, Oxford, UK, 41–76 (2000).
  • Kotynia A , KamaszE, CzaporH, BrasunJ. The synthesis of opiorphin and studies on its binding ability toward Cu(II). Tetrahedron Lett.51, 2486–288 (2010).
  • Bragagni M , MaestrelliF, MenniniN, GhelardiniC, MuraP. Liposomal formulations of prilocaine: effect of complexation with hydroxypropyl-ß-cyclodextrin on drug anaesthetic efficacy. J. Lipos. Res.20, 315–322 (2010).
  • Maestrelli F , González-RodríguezML, RabascoAM, GhelardiniC, MuraP. New “drug-in cyclodextrin-in deformable liposomes” formulations to improve the therapeutic efficacy of local anaesthetics. Int. J. Pharm.395, 222–231 (2010).
  • Hernàndez-Delgadillo GP , CruzSL. Endogenous opioids are involved in morphine and dipyrone analgesic potentiation in the tail flick test in rats. Eur. J. Pharmacol.546, 54–59 (2006).
  • Nicholas AR , ScottMJ, KennedyNI, JonesMN. Effect of grafted polyethylene glycol (PEG) on the size, encapsulation efficiency and permeability of vesicles. Biochim. Biophys. Acta1463, 167–178 (2000).
  • Bai S , AhsanF. Inhalable liposomes of low molecular weight heparin for the treatment of venous thromboembolism. J. Pharm. Sci.99, 4554–4564 (2010).
  • Panwar P , PandeyB, LakheraPC, SinghKP. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int. J. Nanomedicine5, 101–108 (2010).
  • Yang T , CuiF, ChoiMKet al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation. Int. J. Pharm.338, 317–26 (2007).
  • Nie Y , LiJ, DingHet al. Cholesterol derivatives based charged liposomes for doxorubicin delivery: preparation, in vitro and in vivo characterization. Theranostics2, 1092–1103 (2012).