2,127
Views
48
CrossRef citations to date
0
Altmetric
Review

Role of STAT3 pathway in genitourinary tumors

, , , , , , , , , , , & show all
Article: FSO15 | Published online: 01 May 2015

References

  • Darnell JE Jr , KerrIM, StarkGR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science264, 1415–1421 (1994).
  • Yu H , JoveR. The STATs of cancer-new molecular targets come of age. Nat. Rev. Cancer4(2), 97–105 (2004).
  • Raz R , DurbinJE, LevyDE. Acute phase response factor and additional members of the interferon-stimulated gene factor 3 family integrate diverse signals from cytokines, interferons, and growth factors. J. Biol. Chem.269(39), 24391–24395 (1994).
  • Silva CM . Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene23(48), 8017–8023 (2004).
  • Zammarchi F , de StanchinaE, BournazouEet al. Antitumorigenic potential of STAT3 alternative splicing modulation. Proc. Natl Acad. Sci. USA108(43), 17779–17784 (2011).
  • Ng IH , NgDC, JansDA, BogoyevitchMA. Selective STAT3-α or -β expression reveals spliceform-specific phosphorylation kinetics, nuclear retention and distinct gene expression outcomes. Biochem. J.447(1), 125–136 (2012).
  • Zhong Z , WenZ, DarnellJEJr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science264(5155), 95–98 (1994).
  • West NR , MurrayJI, WatsonPH. Oncostatin-M promotes phenotypic changes associated with mesenchymal and stem cell-like differentiation in breast cancer. Oncogene33(12), 1485–1494 (2014).
  • Guo L , ChenC, ShiMet al. Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelialmesenchymal transition. Oncogene32(45), 5272–5282 (2013).
  • Wen Z , ZhongZ, DarnellJE. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell82(2), 241–250 (1995).
  • Garcia R , YuCL, HudnallAet al. Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cells. Cell Growth Differ.8(12), 1267–1276 (1997).
  • Grandis JR , DrenningSD, ChakrabortyAet al. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor-mediated cell growth in vitro. J. Clin. Invest.102(7), 1385–1392 (1998).
  • Cattaneo E , MagrassiL, De-FrajaCet al. Variations in the levels of the JAK/STAT and ShcA proteins in human brain tumors. AntiCancer Res.18(4A), 2381–2387 (1998).
  • Fl⊘renes VA , LuC, BhattacharyaNet al. Interleukin-6 dependent induction of the cyclin dependent kinase inhibitor p21WAF1/CIP1 is lost during progression of human malignant melanoma. Oncogene18(4), 1023–1032 (1999).
  • Kirkwood JM , FarkasDL, ChakrabortyAet al. Systemic interferon-alpha (IFN-alpha) treatment leads to Stat3 inactivation in melanoma precursor lesions. Mol. Med.5(1), 11–20 (1999).
  • Lou W , NiZ, DyerKet al. Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate42(3), 239–242 (2000).
  • Magrassi L , De-FrajaC, ContiLet al. Expression of the JAK and STAT superfamilies in human meningiomas. J. Neurosurg.91(3), 440–446 (1999).
  • Pansky A , HildebrandP, Fasler-KanEet al. Defective Jak-STAT signal transduction pathway in melanoma cells resistant to growth inhibition by interferon-alpha. Int. J. Cancer85(5), 720–725 (2000).
  • Schrell UM , KochHU, MarschalekRet al. Formation of autocrine loops in human cerebral meningioma tissue by leukemia inhibitor factor, interleukin-6, and oncostatin M: inhibition of meningioma cell growth in vitro by recombinant oncostatin M. J. Neurosurg.88(3), 541–548 (1998).
  • Bromberg JF , WrzeszczynskaMH, DevganGet al. Stat3 as an oncogene. Cell98(3), 295–303 (1999).
  • Catlett-Falcone R , LandowskiTH, OshiroMMet al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity10(1), 105–115 (1999).
  • Kujawski M , KortylewskiM, LeeH, HerrmannA, KayH, YuH. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J. Clin. Invest.118(10), 3367–3377 (2008).
  • Burke WM , JinX, LinHJet al. Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells. Oncogene20(55), 7925–7934 (2001).
  • Chiu HC , ChouDL, HuangCTet al. Suppression of STAT3 activity sensitizes gefitinib-resistant non small cell lung cancer cells. Biochem. Pharmacol.81(11), 1263–1270 (2011).
  • Vinkemeier U . Getting the message across, STAT! Design principles of a molecular signaling circuit. J. Cell Biol.167(2), 197–201 (2004).
  • Gorlich D . Transport into and out of the cell nucleus. EMBO J.17(10), 2721–2727 (1998).
  • Ma J , ZhangT, Novotny-DiermayrVet al. A novel sequence in the coiled-coil domain of Stat3 essential for its nuclear translocation. J. Biol. Chem.278(31), 29252–29260 (2003).
  • Frank DA . STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett.251(2), 199–210 (2007).
  • Suetsugu S , TakenawaT. Regulation of cortical actin networks in cell migration. Int. Rev. Cytol.229, 245–286 (2003).
  • Teng Y , RossJL, CowellJK. The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. JAKSTAT3(1), e28086 (2014).
  • Sun B , KawaharaM, EhataS, NagamuneT. AAG8 promotes carcinogenesis by activating STAT3. Cell Signal.26(9), 1863–1869 (2014).
  • Lamouille S , XuJ, DerynckR. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol.15(3), 178–196 (2014).
  • Puisieux A , BrabletzT, CaramelJ. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol.16(6), 488–494 (2014).
  • Wendt MK , BalanisN, CarlinCR, SchiemannWP. STAT3 and epithelial-mesenchymal transitions in carcinomas. JAKSTAT3(1), e28975 (2014).
  • Biswas SK , MantovaniA. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol.11(10), 889–896 (2010).
  • Kortylewski M , KujawskiM, WangTet al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med.11(12), 1314–1321 (2005).
  • Kortylewski M , XinH, KujawskiMet al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell15(2), 114–123 (2009).
  • Kujawski M , KortylewskiM, LeeH, HerrmannA, KayH, YuH. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J. Clin. Invest.118(10), 3367–3377 (2008).
  • Wang L , YiT, KortylewskiM, PardollDM, ZengD, YuH. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J. Exp. Med.206(7), 1457–1464 (2009).
  • Deng J , LiuY, LeeHet al. S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell21(5), 642–654 (2012).
  • Dhir R , NiZ, LouW, DeMiguelF, GrandisJR, GaoAC. Stat3 activation in prostatic carcinomas. Prostate51(4), 241–246 (2002).
  • Ni Z , LouW, LemanES, GaoAC. Inhibition of constitutively activated Stat3 signaling pathway suppresses growth of prostate cancer cells. Cancer Res.60(5), 1225–1228 (2000).
  • Schroeder A , HerrmannA, CherryholmesGet al. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res.74(4), 1227–1237 (2014).
  • Li L , XieH, LiangLet al. Increased PrLZ-mediated androgen receptor transactivation promotes prostate cancer growth at castration-resistant stage. Carcinogenesis34(2), 257–267 (2013).
  • Zhang D , HeD, XueYet al. PrLZ protects prostate cancer cells from apoptosis induced by androgen deprivation via the activation of Stat3/Bcl-2 pathway. Cancer Res.71(6), 2193–2202 (2011).
  • Ahlqvist K , SaamarthyK, Syed KhajaAS, BjartellA, MassoumiR. Expression of Id proteins is regulated by the Bcl-3 proto-oncogene in prostate cancer. Oncogene32(12), 1601–1608 (2013).
  • Ueda T , BruchovskyN, SadarMD. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J. Biol. Chem.277(9), 7076–7085 (2002).
  • Mora LB , BuettnerR, SeigneJet al. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res.62(22), 6659–6666 (2002).
  • Stoyanova T , CooperAR, DrakeJMet al. Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. Proc. Natl Acad. Sci. USA110(50), 20111–20116 (2013).
  • Markert EK , MizunoH, VazquezA, LevineAJ. Molecular classification of prostate cancer using curated expression signatures. Proc. Natl Acad. Sci. USA108(52), 21276–21281 (2011).
  • Kroon P , BerryPA, StowerMJet al. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res.73(16), 5288–5298 (2013).
  • Fang LY , IzumiK, LaiKPet al. Infiltrating macrophages promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-STAT3 signaling. Cancer Res.73(18), 5633–5646 (2013).
  • Thisse B , el MessalM, Perrin-SchmittF. The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res.15(8), 3439–3453 (1987).
  • Yang J , ManiSA, DonaherJLet al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell117(7), 927–939 (2004).
  • Shiota M , ZardanA, TakeuchiAet al. Clusterin mediates TGF-beta-induced epithelial-mesenchymal transition and metastasis via Twist1 in prostate cancer cells. Cancer Res.72(20), 5261–5272 (2012).
  • Bishop JL , ThaperD, ZoubeidiA. The multifaceted roles of STAT3 signaling in the progression of prostate cancer. Cancers (Basel)6(2), 829–859 (2014).
  • Kujawski M , KortylewskiM, LeeH, HerrmannA, KayH, YuH. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J. Clin. Invest.118(10), 3367–3377 (2008).
  • Eisermann K , BroderickCJ, BazarovA, MoazamMM, FraizerGC. Androgen up-regulates vascular endothelial growth factor expression in prostate cancer cells via an Sp1 binding site. Mol. Cancer12, 7 (2013).
  • Gray MJ , ZhangJ, EllisLMet al. HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene24(19), 3110–3120 (2005).
  • Horinaga M , OkitaH, NakashimaJ, KanaoK, SakamotoM, MuraiM. Clinical and pathologic significance of activation of signal transducer and activator of transcription 3 in prostate cancer. Urology66(3), 671–675 (2005).
  • Liu X , HeZ, LiC-H, HuangG, DingC, LiuH. Correlation analysis of JAK-STAT pathway components on prognosis of patients with prostate cancer. Pathol. Oncol. Res.18(1), 17–23 (2012).
  • Akimoto S , OkumuraA, FuseH. Relationship between serum levels of interleukin-6, tumor necrosis factor-alpha and bone turnover markers in prostate cancer patients. Endocr. J.45(2), 183–189 (1998).
  • Adler HL , McCurdyMA, KattanMW, TimmeTL, ScardinoPT, ThompsonTC. Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J. Urol.161(1), 182–187 (1999).
  • Nakashima J , TachibanaM, HoriguchiYet al. Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin. Cancer Res.6(7), 2702–2706 (2000).
  • Tam L , McGlynnLM, TraynorP, MukherjeeR, BartlettJMS, EdwardsJ. Expression levels of the JAK/STAT pathway in the transition from hormone-sensitive to hormone-refractory prostate cancer. Br. J. Cancer97(3), 378–383 (2007).
  • Beer TM , ArmstrongAJ, RathkopfDEet al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med.371(5), 424–433 (2014).
  • Scher HI , FizaziK, SaadFet al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med.367(13), 1187–1197 (2012).
  • Antonarakis ES , LuC, WangHet al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med.371(11), 1028–1038 (2014).
  • Liu C , ZhuY, LouW, CuiY, EvansCP, GaoAC. Inhibition of constitutively active Stat3 reverses enzalutamide resistance in LNCaP derivative prostate cancer cells. Prostate74(2), 201–209 (2014).
  • Han Z , WangX, MaLet al. Inhibition of STAT3 signaling targets both tumor-initiating and differentiated cell populations in prostate cancer. Oncotarget5(18), 8416–8428 (2014).
  • Foster CS , RossJS. Pathologyof the urachus. In: Pathologyof the Urinary Bladder. FosterCS, RossJS ( Eds). Saunders, Philadelphia, PA, USA, 183–267 (2004).
  • van Rhijn BWG , van der KwastTH, VisANet al. FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res.64(6), 1911–1914 (2004).
  • Ho PL , LayEJ, JianW, ParraD, ChanKS. Stat3 activation in urothelial stem cells leads to direct progression to invasive bladder cancer. Cancer Res.72(13), 3135–3142 (2012).
  • Ho PL , KurtovaA, ChanKS. Normal and neoplastic urothelial stem cells: getting to the root of the problem. Nat. Rev. Urol.9(10), 583–594 (2012).
  • Zhang B , LuZ, HouY, HuJ, WangC. The effects of STAT3 and survivin silencing on the growth of human bladder carcinoma cells. Tumour Biol.35(6), 5401–5407 (2014).
  • Guo Z , LinnJF, WuGet al. CDC91L1 (PIG-U) is a newly discovered oncogene in human bladder cancer. Nat. Med.10(4), 374–381 (2004).
  • Cheng J , HuangH, ZhangZTet al. Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Res.62(14), 4157–4163 (2002).
  • Itoh M , MurataT, SuzukiTet al. Requirement of STAT3 activation for maximal collagenase-1 (MMP-1) induction by epidermal growth factor and malignant characteristics in T24 bladder cancer cells. Oncogene25(8), 1195–1204 (2006).
  • Shen HB , GuZQ, JianK, QiJ. CXCR4-mediated Stat3 activation is essential for CXCL12-induced cell invasion in bladder cancer. Tumour Biol.34(3), 1839–1845 (2013).
  • Siegel R , MaJ, ZouZ, JemalA. Cancer statistics, 2014. CA Cancer J Clin.64(1), 9–29 (2014).
  • Iacovelli R , AlesiniD, PalazzoAet al. Targeted therapies and complete responses in first line treatment of metastatic renal cell carcinoma. A meta-analysis of published trials. Cancer Treat. Rev.40, 271–275 (2014).
  • Masuda A , KamaiT, AbeH, AraiK, YoshidaK. Is Stat3 and/or p53 mRNA expression a prognostic marker for renal cell carcinoma?Biomed. Res.30(3), 171–176 (2009).
  • Guo C , YangG, KhunKet al. Activation of Stat3 in renal tumors. Am. J. Transl. Res.1(3), 283–290 (2009).
  • Zhou J , DengZ, ChenYet al. Overexpression of FABP7 promotes cell growth and predicts poor prognosis of clear cell renal cell carcinoma. Urol. Oncol.33(3), 113.e9–113.e17 (2015).
  • Marhaba R , ZöllerM. CD44 in cancer progression: adhesion, migration and growth regulation. J. Mol. Histol.35(3), 211–231 (2004).
  • Qin J , YangB, XuBQet al. Concurrent CD44s and STAT3 expression in human clear cell renal cellular carcinoma and its impact on survival. Int. J. Clin. Exp. Pathol.7(6), 3235–3244 (2014).
  • Jung JE , LeeHG, ChoIHet al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J.19(10), 1296–1298 (2005).
  • Pawlus MR , WangL, HuCJ. STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene33(13), 1670–1679 (2014).
  • Horiguchi A , OyaM, MarumoK, MuraiM. STAT3, but not ERKs, mediates the IL-6-induced proliferation of renal cancer cells, ACHN and 769P. Kidney Int.61(3), 926–938 (2002).
  • Santoni M , MassariF, AmantiniCet al. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Imm. Immunother.62(12), 1757–1768 (2013).
  • Ito N , EtoM, NakamuraEet al. STAT3 polymorphism predicts interferon-alfa response in patients with metastatic renal cell carcinoma. J. Clin. Oncol.25(19), 2785–2791 (2007).
  • Xin H , ZhangC, HerrmannA, DuY, FiglinR, YuH. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res.69(6), 2506–2013 (2009).
  • Yuan H , CaiP, LiQet al. Axitinib augments antitumor activity in renal cell carcinoma via STAT3-dependent reversal of myeloid-derived suppressor cell accumulation. Biomed. Pharmacother.68(6), 751–756 (2014).
  • Fang Z , TangY, FangJet al. Simvastatin inhibits renal cancer cell growth and metastasis via AKT/mTOR, ERK and JAK2/STAT3 pathway. PLoS One8(5), e62823 (2013).