2,262
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Interaction of Graphene Nanoribbons With Components of the Blood Vascular System

, &
Article: FSO19 | Published online: 02 Jun 2015

References

  • Lynch I , DawsonKA. Protein-nanoparticle interactions. Nano Today3(1), 40–47 (2008).
  • Fischer HC , ChanWC. Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol.18(6), 565–571 (2007).
  • Deng ZJ , LiangM, MonteiroM, TothI, MinchinRF. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol.6(1), 39–44 (2010).
  • Lynch I , SalvatiA, DawsonKA. Protein-nanoparticle interactions: what does the cell see?Nat. Nanotechnol.4, 546–547 (2009).
  • Deng ZJ , MortimerG, SchillerT, MusumeciA, MartinD, MinchinRF. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology20(45), 455101 (2009).
  • Zhang X-D , WuD, ShenXet al. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int. J. Nanomed.6, 2071 (2011).
  • Zhu M-T , WangB, WangYet al. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol. Lett.203(2), 162–171 (2011).
  • Montiel-DáValos AL , Ventura-GallegosJL, Alfaro-MorenoEet al. TiO2 nanoparticles induce dysfunction and activation of human endothelial cells. Chem. Res. Toxicol.25(4), 920–930 (2012).
  • Duan J , YuY, LiYet al. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. PloS ONE8(4), e62087 (2013).
  • Vesterdal LK , MikkelsenL, FolkmannJKet al. Carbon black nanoparticles and vascular dysfunction in cultured endothelial cells and artery segments. Toxicol. Lett.214(1), 19–26 (2012).
  • Adamcakova-Dodd A , StebounovaLV, KimJSet al. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part Fibre Toxicol.11(1), 15 (2014).
  • Tahara K , TadokoroS, YamamotoH, KawashimaY, HirashimaN. The suppression of IgE-mediated histamine release from mast cells following exocytic exclusion of biodegradable polymeric nanoparticles. Biomaterials.33(1), 343–351 (2012).
  • Frame MD , DewarAM, Mullick ChowdhuryS, SitharamanB. Vasoactive effects of stable aqueous suspensions of single walled carbon nanotubes in hamsters and mice. Nanotoxicology8(8), 867–875 (2014).
  • Sun X , LiuZ, WelsherKet al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.1(3), 203–212 (2008).
  • Zhang L , XiaJ, ZhaoQ, LiuL, ZhangZ. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small6(4), 537–544 (2010).
  • Kanakia S , ToussaintJD, Mullick ChowdhurySet al. Dose ranging, expanded acute toxicity and safety pharmacology studies for intravenously administered functionalized graphene nanoparticle formulations. Biomaterials35(25), 7022–7031 (2014).
  • Chang Y , YangS-T, LiuJ-Het al. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett.200(3), 201–210 (2011).
  • Chowdhury SM , KanakiaS, ToussaintJDet al. In vitro hematological and in vivo vasoactivity assessment of dextran functionalized graphene. Sci. Rep.3, 2584 (2013).
  • Lalwani G , SitharamanB. Multifunctional fullerene-and metallofullerene-based nanobiomaterials. Nano Life3(3), doi:10.1142/S17939844134 2003 8 (2013).
  • Kosynkin DV , HigginbothamAL, SinitskiiAet al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature458(7240), 872–876 (2009).
  • Paratala BS , JacobsonBD, KanakiaS, FrancisLD, SitharamanB. Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons. PloS ONE7(6), e38185 (2012).
  • Chowdhury SM , ManepalliP, SitharamanB. Graphene nanoribbons elicit cell specific uptake and delivery via activation of epidermal growth factor receptor enhanced by human papillomavirus E5 protein. Acta Biomater.10(10), 4494–4504 (2014).
  • Chowdhury SM , SurhlandC, SanchezZet al. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomed. Nanotechnol.11(1), 109–118 (2014).
  • Chowdhury SM , LalwaniG, ZhangK, YangJY, NevilleK, SitharamanB. Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials34(1), 283–293 (2012).
  • Kanakia S , ToussaintJD, Mullick ChowdhurySet al. Dose ranging, expanded acute toxicity and safety pharmacology studies for intravenously administered functionalized graphene nanoparticle formulations. Biomaterials35(25), 7022–7031 (2014).
  • Mullick Chowdhury S , DasguptaS, McelroyAE, SitharamanB. Structural disruption increases toxicity of graphene nanoribbons. J. Appl. Toxicol.34(11), 1235–1246 (2014).
  • Talukdar Y , RashkowJT, LalwaniG, KanakiaS, SitharamanB. The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials35(18), 4863–4877 (2014).
  • Pozzi D , ColapicchioniV, CaraccioloGet al. Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale6(5), 2782–2792 (2014).
  • Dobrovolskaia MA , ClogstonJD, NeunBW, HallJB, PatriAK, McneilSE. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett.8(8), 2180–2187 (2008).
  • Salvador-Morales C , ZhangL, LangerR, FarokhzadOC. Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials30(12), 2231–2240 (2009).
  • Fornaguera C , CalderóG, MitjansM, VinardellMP, SolansC, VauthierC. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies. Nanoscale7(14), 6045–6058 (2015).
  • Joglekar M , RoggersRA, ZhaoY, TrewynBG. Interaction effects of mesoporous silica nanoparticles with different morphologies on human red blood cells. RSC Adv.3(7), 2454–2461 (2013).
  • Yildirim A , OzgurE, BayindirM. Impact of mesoporous silica nanoparticle surface functionality on hemolytic activity, thrombogenicity and non-specific protein adsorption. J. Mater. Chem. B.1(14), 1909–1920 (2013).
  • Antonelli A , SfaraC, RahmerJ, GleichB, BorgertJ, MagnaniM. Red blood cells as carriers in magnetic particle imaging. Biomed. Tech. (Berl).58(6), 517–525 (2013).
  • Tenzer S , DocterD, KuharevJet al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol.8(10), 772–781 (2013).
  • Zarda P , ChienS, SkalakR. Elastic deformations of red blood cells. J. Biomech.10(4), 211–221 (1977).
  • Agre P , ParkerJC. Red Blood Cell Membranes: Structure, Function, Clinical Implications. CRC Press, FL, USA, 11 (1989).
  • Barshtein G , ArbellD, YedgarS. Hemolytic effect of polymeric nanoparticles: role of albumin. IEEE Trans. NanoBioscience10(4), 259–261 (2011).
  • Meng J , ChengX, LiuJet al. Effects of long and short carboxylated or aminated multiwalled carbon nanotubes on blood coagulation. PloS ONE7(7), e38995 (2012).
  • Liao K-H , LinY-S, MacoskoCW, HaynesCL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Inter.3(7), 2607–2615 (2011).
  • Peters L , LuxS. Ankyrins: structure and function in normal cells and hereditary spherocytes. Semin. Hematol.30(2), 85–118 (1993).
  • Wiley JS . Red cell survival studies in hereditary spherocytosis. J. Clin. Invest.49(4), 666 (1970).
  • Banerjee R , NageshwariK, PuniyaniR. The diagnostic relevance of red cell rigidity. Clin. Hemorheol. Micro.19(1), 21–24 (1998).
  • Jacob HS . The defective red blood cell in hereditary spherocytosis. Annu. Rev. Med.20(1), 41–61 (1969).
  • Ding W-X , ShenH-M, OngC-N. Critical role of reactive oxygen species formation in microcystin-induced cytoskeleton disruption in primary cultured hepatocytes. J. Toxicol. Environ. Health A.64(6), 507–519 (2001).
  • Kulms D , DüssmannH, PöppelmannB, StänderS, SchwarzA, SchwarzT. Apoptosis induced by disruption of the actin cytoskeleton is mediated via activation of CD95 (Fas/APO-1). Cell Death Differ.9(6), 598–608 (2002).
  • Akdis CA , BlaserK. Histamine in the immune regulation of allergic inflammation. J. Allergy Clin. Immunol.112(1), 15–22 (2003).
  • Dvorak A , GalliS. Antigen-induced, IgE-mediated degranulation of cloned immature mast cells derived from normal mice. Am. J. Pathol.126(3), 535 (1987).
  • Weiss S , RobbGP, EllisLB. The systemic effects of histamine in man: with special reference to the responses of the cardiovascular system. Arch. Intern. Med.49(3), 360 (1932).
  • Chen EY , GarnicaM, WangY-C, MintzAJ, ChenC-S, ChinW-C. A mixture of anatase and rutile TiO 2 nanoparticles induces histamine secretion in mast cells. Part Fibre Toxicol.9, 2–2 (2012).
  • Gresele P , PageC, FusterV, VermylenJ. Platelets in thrombotic and non-thrombotic disorders. Transfus. Med.13(1), 57–58 (2003).
  • Radomski A , JuraszP, Alonso-EscolanoDet al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol.146(6), 882–893 (2005).
  • Wu KK , HoakJC. Increased platelet aggregates in patients with transient ischemic attacks. Stroke6(5), 521–524 (1975).
  • Semberova J , De Paoli LacerdaSH, SimakovaO, HoladaK, GeldermanMP, SimakJ. Carbon nanotubes activate blood platelets by inducing extracellular Ca2+ influx sensitive to calcium entry inhibitors. Nano Lett.9(9), 3312–3317 (2009).
  • Singh SK , SinghMK, NayakMKet al. Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano5(6), 4987–4996 (2011).
  • Nilsson B , EkdahlKN, MollnesTE, LambrisJD. The role of complement in biomaterial-induced inflammation. Mol. Immunol.44(1), 82–94 (2007).
  • Hamad I , Christy HunterA, RuttKJ, LiuZ, DaiH, Moein MoghimiS. Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Mol. Immunol.45(14), 3797–3803 (2008).
  • Chanan-Khan A , SzebeniJ, SavaySet al. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil®): possible role in hypersensitivity reactions. Ann. Oncol.14(9), 1430–1437 (2003).
  • Schutte RJ , Parisi-AmonA, ReichertWM. Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries. J. Biomed. Mater. Res. A.88(1), 128–139 (2009).
  • Barton GM . A calculated response: control of inflammation by the innate immune system. J. Clin. Invest.118(2), 413 (2008).
  • Li JJE , MuralikrishnanS, NgC-T, YungL-YL, BayB-H. Nanoparticle-induced pulmonary toxicity. Exp. Biol. Med.235(9), 1025–1033 (2010).
  • Ma JY , ZhaoH, MercerRRet al. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology5(3), 312–325 (2011).
  • Chen H , DorriganA, SaadS, HareDJ, CortieMB, ValenzuelaSM. In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PloS ONE8(2), e58208 (2013).
  • Cho W-S , ChoM, JeongJet al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol.236(1), 16–24 (2009).
  • Duan J , YuY, LiYet al. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Inter. J. Nanomed.9, 5131–5141 (2014).