1,013
Views
2
CrossRef citations to date
0
Altmetric
Special Report

Unraveling Protein Misfolding Diseases Using Model Systems

, &
Article: FSO41 | Published online: 07 Aug 2015

References

  • Van Dam D , De DeynPP. Animal models in the drug discovery pipeline for Alzheimer's disease. Br. J. Pharmacol.164(4), 1285–1300 (2011).
  • Levin ED , RoseJE, McgurkSR, ButcherLL. Characterization of the cognitive effects of combined muscarinic and nicotinic blockade. Behav. Neural Biol.53(1), 103–112 (1990).
  • Yamada M , ChibaT, SasabeJet al. Implanted cannula-mediated repetitive administration of Aβ25–35 into the mouse cerebral ventricle effectively impairs spatial working memory. Behav. Brain Res.164(2), 139–146 (2005).
  • Roberts TJ . 3-Nitropropionic acid model of metabolic stress. Methods Mol. Med.104, 203–220 (2005).
  • Sanberg PR , CalderonSF, GiordanoM, TewJM, NormanAB. The quinolinic acid model of Huntington's disease: locomotor abnormalities. Exp. Neurol.105(1), 45–53 (1989).
  • Ungerstedt U . 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol.5(1), 107–110 (1968).
  • Prikhojan A , BrannanT, YahrM. Comparative effects of repeated administration of dopamine agonists on circling behavior in rats. J. Neural Transmission107(10), 1159–1164 (2000).
  • Philipson O , LordA, GumucioA, O'callaghanP, LannfeltL, NilssonLN. Animal models of amyloid-β-related pathologies in Alzheimer's disease. FEBS J.277(6), 1389–1409 (2010).
  • Wirak D , BayneyR, RamabhadranTet al. Age-associated inclusions in normal and transgenic mouse brain. Science255, 1445 (1992).
  • Lamb BT , SisodiaSS, LawlerAMet al. Introduction and expression of the 400 kilobase precursor amyloid protein gene in transgenic mice. Nat. Genet.5(1), 22–30 (1993).
  • Irizarry MC , SorianoF, McnamaraMet al. Aβ deposition is associated with neurophil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J. Neurosci.17(18), 7053–7059 (1997).
  • Masliah E , SiskA, MalloryM, GamesD. Neurofibrillary pathology in transgenic mice overexpressing V717F [beta]-amyloid precursor protein. J. Neuropathol. Exp. Neurol.60(4), 357–368 (2001).
  • Ona VO , LiM, VonsattelJPGet al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature399(6733), 263–267 (1999).
  • Chesselet M-F . In vivo α-synuclein overexpression in rodents: a useful model of Parkinson's disease?Exp. Neurol.209(1), 22–27 (2008).
  • Li X , PatelJC, WangJet al. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J. Neurosci.30(5), 1788–1797 (2010).
  • Greeve I , KretzschmarD, TschäpeJ-Aet al. Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. J. Neurosci.24(16), 3899–3906 (2004).
  • Finelli A , KelkarA, SongH-J, YangH, KonsolakiM. A model for studying Alzheimer's Aβ42-induced toxicity in Drosophila melanogaster. Mol. Cell. Neurosci.26(3), 365–375 (2004).
  • Iijima K , LiuH-P, ChiangA-S, HearnSA, KonsolakiM, ZhongY. Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: a potential model for Alzheimer's disease. Proc. Natl Acad. Sci. USA101(17), 6623–6628 (2004).
  • Crowther D , KinghornK, MirandaEet al. Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer's disease. Neuroscience132(1), 123–135 (2005).
  • Whitworth AJ , WesPD, PallanckLJ. Drosophila models pioneer a new approach to drug discovery for Parkinson's disease. Drug Discov. Today11(3), 119–126 (2006).
  • Pendleton RG , ParvezF, SayedM, HillmanR. Effects of pharmacological agents upon a transgenic model of Parkinson's disease in Drosophila melanogaster. J. Pharmacol. Exp. Ther.300(1), 91–96 (2002).
  • Lee W-CM , YoshiharaM, LittletonJT. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington's disease. Proc. Natl Acad. Sci. USA101(9), 3224–3229 (2004).
  • Pallos J , BodaiL, LukacsovichTet al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum. Mol. Genet.17(23), 3767–3775 (2008).
  • Agrawal N , PallosJ, SlepkoNet al. Identification of combinatorial drug regimens for treatment of Huntington's disease using Drosophila. Proc. Natl Acad. Sci. USA102(10), 3777–3781 (2005).
  • Wolfgang WJ , MillerTW, WebsterJMet al. Suppression of Huntington's disease pathology in Drosophila by human single-chain Fv antibodies. Proc. Natl Acad. Sci. USA102(32), 11563–11568 (2005).
  • Warrick JM , ChanHE, Gray-BoardGL, ChaiY, PaulsonHL, BoniniNM. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet.23(4), 425–428 (1999).
  • Auluck PK , ChanHE, TrojanowskiJQ, LeeVM-Y, BoniniNM. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science295(5556), 865–868 (2002).
  • Muchowski PJ , WackerJL. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci.6(1), 11–22 (2005).
  • Jackson GR , Wiedau-PazosM, SangT-Ket al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron34(4), 509–519 (2002).
  • Zhong H , ZouH, SemenovMVet al. Characterization and development of novel small-molecules inhibiting GSK3 and activating Wnt signaling. Mol. BioSyst.5(11), 1356–1360 (2009).
  • Zou H , ZhouL, LiYet al. Benzo-[ε]-isoindole-1, 3-diones as potential inhibitors of glycogen synthase kinase-3 (GSK-3). Synthesis, kinase inhibitory activity, zebrafish phenotype, and modeling of binding mode. J. Med. Chem.53(3), 994–1003 (2009).
  • Anichtchik OV , KaslinJ, PeitsaroN, ScheininM, PanulaP. Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. J. Neurochem.88(2), 443–453 (2004).
  • Bretaud S , LeeS, GuoS. Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease. Neurotoxicol. Teratol.26(6), 857–864 (2004).
  • Flinn L , MortiboysH, VolkmannK, KösterRW, InghamPW, BandmannO. Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Brain132(6), 1613–1623 (2009).
  • Markaki M , TavernarakisN. Modeling human diseases in Caenorhabditis elegans. Biotechnol. J.5(12), 1261–1276 (2010).
  • Haldimann P , MurisetM, VighL, GoloubinoffP. The novel hydroxylamine derivative NG-094 suppresses polyglutamine protein toxicity in Caenorhabditis elegans. J. Biol. Chem.286(21), 18784–18794 (2011).
  • Gohil VM , OffnerN, WalkerJAet al. Meclizine is neuroprotective in models of Huntington's disease. Hum. Mol. Genet.20(2), 294–300 (2011).
  • Daigle I , LiC. apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor. Proc. Natl Acad. Sci. USA90(24), 12045–12049 (1993).
  • Ewald CY , RapsDA, LiC. APL-1, the Alzheimer's amyloid precursor protein in Caenorhabditis elegans, modulates multiple metabolic pathways throughout development. Genetics191(2), 493–507 (2012).
  • Mccormick AV , WheelerJM, GuthrieCR, LiachkoNF, KraemerBC. Dopamine D2 receptor antagonism suppresses tau aggregation and neurotoxicity. Biol. Psychiatry73(5), 464–471 (2013).
  • Munoz-Lobato F , Rodriguez-PaleroMJ, Naranjo-GalindoFJet al. Protective role of DNJ-27/ERdj5 in Caenorhabditis elegans models of human neurodegenerative diseases. Antioxid. Redox Signal.20(2), 217–235 (2014).
  • Li J , HuangKX, LeWD. Establishing a novel C. elegans model to investigate the role of autophagy in amyotrophic lateral sclerosis. Acta Pharmacol. Sin.34(5), 644–650 (2013).
  • Vaccaro A , PattenSA, CiuraSet al. Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio. PLoS ONE7(7), e42117 (2012).
  • Outeiro TF , MuchowskiPJ. Molecular genetics approaches in yeast to study amyloid diseases. J. Mol. Neurosci.23(1–2), 49–59 (2004).
  • Heinicke S , LivstoneMS, LuCet al. The Princeton Protein Orthology Database (P-POD): a comparative genomics analysis tool for biologists. PLoS ONE2(8), e766 (2007).
  • Pimentel C , Batista-NascimentoL, Rodrigues-PousadaC, MenezesRA. Oxidative stress in Alzheimer's and Parkinson's diseases: insights from the yeast Saccharomyces cerevisiae. Oxidat. Med. Cell. Longevity 2012:132146, (2012).
  • Bastow EL , GourlayCW, TuiteMF. Using yeast models to probe the molecular basis of amyotrophic lateral sclerosis. Biochem. Soc. Trans.39(5), 1482–1487 (2011).
  • Winzeler EA , ShoemakerDD, AstromoffAet al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science285(5429), 901–906 (1999).
  • Willingham S , OuteiroTF, DevitMJ, LindquistSL, MuchowskiPJ. Yeast genes that enhance the toxicity of a mutant huntingtin fragment or α-synuclein. Science302(5651), 1769–1772 (2003).
  • Giorgini F , GuidettiP, NguyenQ, BennettSC, MuchowskiPJ. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat. Genet.37(5), 526–531 (2005).
  • Schwarcz R . The kynurenine pathway of tryptophan degradation as a drug target. Curr. Opin. Pharmacol.4(1), 12–17 (2004).
  • Hu Y , LiuL, KmiecEB. Reduction of Htt inclusion formation in strains of Saccharomyces cerevisiae deficient in certain DNA repair functions: a statistical analysis of phenotype. Exp. Cell Res.291(1), 46–55 (2003).
  • Cooper AA , GitlerAD, CashikarAet al. α-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science313(5785), 324–328 (2006).
  • Soper JH , RoyS, StieberAet al. α-synuclein–induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae. Mol. Biol. Cell19(3), 1093–1103 (2008).
  • Couthouis J , HartMP, ShorterJet al. A yeast functional screen predicts new candidate ALS disease genes. Proc. Natl Acad. Sci. USA108(52), 20881–20890 (2011).
  • Outeiro TF , GiorginiF. Yeast as a drug discovery platform in Huntington's and Parkinson's diseases. Biotechnol. J.1(3), 258–269 (2006).
  • Zhang X , SmithDL, MeriinABet al. A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo. Proc. Natl Acad. Sci. USA102(3), 892–897 (2005).
  • Ehrnhoefer DE , DuennwaldM, MarkovicPet al. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum. Mol. Genet.15(18), 2743–2751 (2006).
  • Khurana V , LindquistS. Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker's yeast?Nat. Rev Neurosci11(6), 436–449 (2010).
  • Tardiff DF , JuiNT, KhuranaVet al. Yeast reveal a “druggable” Rsp5/Nedd4 network that ameliorates α-synuclein toxicity in neurons. Science342(6161), 979–983 (2013).
  • Chung CY , KhuranaV, AuluckPKet al. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science342(6161), 983–987 (2013).
  • Carrio M , CorcheroJ, VillaverdeA. Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiol. Lett.169(1), 9–15 (1998).
  • Morell M , BravoR, EspargaróAet al. Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim. Biophys. Acta Mol. Cell Res.1783(10), 1815–1825 (2008).
  • Carrió M , González-MontalbánN, VeraA, VillaverdeA, VenturaS. Amyloid-like properties of bacterial inclusion bodies. J. Mol. Biol.347(5), 1025–1037 (2005).
  • Kim W , KimY, MinJ, KimDJ, ChangY-T, HechtMH. A high-throughput screen for compounds that inhibit aggregation of the Alzheimer's peptide. ACS Chem. Biol.1(7), 461–469 (2006).
  • Mckoy AF , ChenJ, SchupbachT, HechtMH. A novel inhibitor of amyloid β (Aβ) peptide aggregation form high throughput screening to efficacy in an animal model of Alzheimer disease. J. Biol. Chem.287(46), 38992–39000 (2012).