1,627
Views
7
CrossRef citations to date
0
Altmetric
Special Report

The Unfolded Protein Response in Glioblastomas: Targetable Or Trouble?

Article: FSO45 | Published online: 28 Jul 2015

References

  • Grossman SA , YeX, PiantadosiSet al. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin. Cancer Res.16(8), 2443–2449 (2010).
  • Ohgaki H , KleihuesP. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol.64(6), 479–489 (2005).
  • Ma Y , HendershotLM. The role of the unfolded protein response in tumour development: friend or foe?Nat. Rev. Cancer4(12), 966–977 (2004).
  • Wang S , KaufmanRJ. The impact of the unfolded protein response on human disease. J. Cell Biol.197(7), 857–867 (2012).
  • Graner MW , CummingRI, BignerDD. The heat shock response and chaperones/heat shock proteins in brain tumors: surface expression, release, and possible immune consequences. J. Neurosci.27(42), 11214–11227 (2007).
  • Dorner AJ , WasleyLC, KaufmanRJ. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem.264(34), 20602–20607 (1989).
  • Csala M , MargittaiE, BanhegyiG. Redox control of endoplasmic reticulum function. Antioxid. Redox Signal.13(1), 77–108 (2010).
  • Wouters BG , KoritzinskyM. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat. Rev. Cancer8(11), 851–864 (2008).
  • Palorini R , CammarataFP, BalestrieriCet al. Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response. Cell Death Dis.4, e732 (2013).
  • Luo B , LeeAS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene32(7), 805–818 (2013).
  • Vandewynckel YP , LaukensD, GeertsAet al. The paradox of the unfolded protein response in cancer. Anticancer Res.33(11), 4683–4694 (2013).
  • Epple LM , DoddRD, MerzALet al. Induction of the unfolded protein response drives enhanced metabolism and chemoresistance in glioma cells. PLoS ONE8(8), e73267 (2013).
  • Larsen M , ArtymVV, GreenJA, YamadaKM. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr. Opin. Cell. Biol.18(5), 463–471 (2006).
  • Mcniven MA . Breaking away: matrix remodeling from the leading edge. Trends Cell Biol.23(1), 16–21 (2013).
  • Paltridge JL , BelleL, Khew-GoodallY. The secretome in cancer progression. Biochim. Biophys. Acta1834(11), 2233–2241 (2013).
  • Eletto D , MagantyA, ElettoDet al. Limitation of individual folding resources in the ER leads to outcomes distinct from the unfolded protein response. J. Cell. Sci.125(Pt 20), 4865–4875 (2012).
  • Bertolotti A , ZhangY, HendershotLM, HardingHP, RonD. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol.2(6), 326–332 (2000).
  • Ma K , VattemKM, WekRC. Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J. Biol. Chem.277(21), 18728–18735 (2002).
  • Cui W , LiJ, RonD, ShaB. The structure of the PERK kinase domain suggests the mechanism for its activation. Acta Crystallogr. D Biol. Crystallogr.67(Pt 5), 423–428 (2011).
  • Baird TD , WekRC. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv. Nutr.3(3), 307–321 (2012).
  • Harding HP , NovoaI, ZhangYet al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell6(5), 1099–1108 (2000).
  • Jiang HY , WekRC. GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation. Biochem. J.385(Pt 2), 371–380 (2005).
  • Kitamura M . Control of NF-kappaB and inflammation by the unfolded protein response. Int. Rev. Immunol.30(1), 4–15 (2011).
  • Cullinan SB , DiehlJA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem.279(19), 20108–20117 (2004).
  • Ma Y , HendershotLM. Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J. Biol. Chem.278(37), 34864–34873 (2003).
  • Tabas I , RonD. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol.13(3), 184–190 (2011).
  • Gardner BM , PincusD, GotthardtK, GallagherCM, WalterP. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol.5(3), a013169 (2013).
  • Ye J , RawsonRB, KomuroRet al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell.6(6), 1355–1364 (2000).
  • Ron D , WalterP. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell. Biol.8(7), 519–529 (2007).
  • Teske BF , WekSA, BunpoPet al. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol. Biol. Cell22(22), 4390–4405 (2011).
  • Ohgaki H , DessenP, JourdeBet al. Genetic pathways to glioblastoma: a population-based study. Cancer Res.64(19), 6892–6899 (2004).
  • Ohgaki H , KleihuesP. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci.100(12), 2235–2241 (2009).
  • Goldbrunner RH , BernsteinJJ, TonnJC. ECM-mediated glioma cell invasion. Microsc. Res. Tech.43(3), 250–257 (1998).
  • Berens ME , GieseA. “…those left behind.” Biology and oncology of invasive glioma cells. Neoplasia1(3), 208–219 (1999).
  • Lu C , ShervingtonA. Chemoresistance in gliomas. Mol. Cell. Biochem.312(1–2), 71–80 (2008).
  • Davis LW . Malignant glioma – a nemesis which requires clinical and basic investigation in radiation oncology. Int. J. Radiat. Oncol. Biol. Phys.16(6), 1355–1365 (1989).
  • Chakravarti A , DickerA, MehtaM. The contribution of epidermal growth factor receptor (EGFR) signaling pathway to radioresistance in human gliomas: a review of preclinical and correlative clinical data. Int. J. Radiat. Oncol. Biol. Phys.58(3), 927–931 (2004).
  • Song T , LiangF, ZhangZ, LiuY, ShengH, XieM. S1 kills MCF-7/ADR cells more than MCF-7 cells: A protective mechanism of endoplasmic reticulum stress. Biomed. Pharmacother.67(8), 731–736 (2013).
  • Rouschop KM , DuboisLJ, KeulersTGet al. PERK/eIF2alpha signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proc. Natl Acad. Sci. USA110(12), 4622–4627 (2013).
  • Roller C , MaddaloD. The molecular chaperone GRP78/BiP in the development of chemoresistance: mechanism and possible treatment. Front. Pharmacol.4, 10 (2013).
  • Moore KA , HollienJ. The unfolded protein response in secretory cell function. Annu. Rev. Genet.46, 165–183 (2012).
  • Ward C , LangdonSP, MullenPet al. New strategies for targeting the hypoxic tumour microenvironment in breast cancer. Cancer Treat. Rev.39(2), 171–179 (2013).
  • Tang X , LucasJE, ChenJLet al. Functional interaction between responses to lactic acidosis and hypoxia regulates genomic transcriptional outputs. Cancer Res.72(2), 491–502 (2012).
  • Graner MW , BignerDD. Chaperone proteins and brain tumors: potential targets and possible therapeutics. Neuro Oncol.7(3), 260–278 (2005).
  • Graner MW , BignerDD. Therapeutic aspects of chaperones/heat-shock proteins in neuro-oncology. Expert Rev. Anticancer Ther.6(5), 679–695 (2006).
  • Graner MW , RaynesDA, BignerDD, GuerrieroV. Heat shock protein 70-binding protein 1 is highly expressed in high-grade gliomas, interacts with multiple heat shock protein 70 family members, and specifically binds brain tumor cell surfaces. Cancer Sci.100(10), 1870–1879 (2009).
  • Graner MW , AlzateO, DechkovskaiaAMet al. Proteomic and immunologic analyses of brain tumor exosomes. FASEB J.23(5), 1541–1557 (2009).
  • Epple LM , GriffithsSG, DechkovskaiaAMet al. Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. PLoS ONE7(7), e42064 (2012).
  • Mosser DD , MorimotoRI. Molecular chaperones and the stress of oncogenesis. Oncogene23(16), 2907–2918 (2004).
  • Jaattela M . Escaping cell death: survival proteins in cancer. Exp. Cell Res.248(1), 30–43 (1999).
  • Jego G , HazoumeA, SeigneuricR, GarridoC. Targeting heat shock proteins in cancer. Cancer Lett.332(2), 275–285 (2013).
  • Clinical Trials . http://clinicaltrials.gov/.
  • Sauvageot CM , WeatherbeeJL, KesariSet al. Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro Oncol.11(2), 109–121 (2009).
  • Nguyen DM , DesaiS, ChenA, WeiserTS, SchrumpDS. Modulation of metastasis phenotypes of non-small cell lung cancer cells by 17-allylamino 17-demethoxy geldanamycin. Ann. Thorac. Surg.70(6), 1853–1860 (2000).
  • Zsebik B , CitriA, IsolaJ, YardenY, SzollosiJ, VerebG. Hsp90 inhibitor 17-AAG reduces ErbB2 levels and inhibits proliferation of the trastuzumab resistant breast tumor cell line JIMT-1. Immunol. Lett.104(1–2), 146–155 (2006).
  • Okawa Y , HideshimaT, SteedPet al. SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood113(4), 846–855 (2009).
  • Marubayashi S , KoppikarP, TaldoneTet al. HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. J. Clin. Invest.120(10), 3578–3593 (2010).
  • Wang X , WangS, LiuYet al. The Hsp90 inhibitor SNX-2112 induces apoptosis of human hepatocellular carcinoma cells: The role of ER stress. Biochem. Biophys. Res. Commun.446(1), 160–166 (2014).
  • Usmani SZ , BonaRD, ChiosisG, LiZ. The anti-myeloma activity of a novel purine scaffold HSP90 inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1. J. Hematol. Oncol.3, 40 (2010).
  • Pyrko P , SchonthalAH, HofmanFM, ChenTC, LeeAS. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res.67(20), 9809–9816 (2007).
  • Wang H , BlaisJ, RonD, CardozoT. Structural determinants of PERK inhibitor potency and selectivity. Chem. Biol. Drug Design76(6), 480–495 (2010).
  • Atkins C , LiuQ, MinthornEet al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res.73(6), 1993–2002 (2013).
  • Graner MW . The unfolded protein response in glioblastomas: passing the stress test. CNS Oncol.2(6), 1–4 (2013).
  • Papandreou I , DenkoNC, OlsonMet al. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood117(4), 1311–1314 (2011).
  • Mimura N , FulcinitiM, GorgunGet al. Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood119(24), 5772–5781 (2012).
  • Volkmann K , LucasJL, VugaDet al. Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J. Biol. Chem.286(14), 12743–12755 (2011).
  • Cross BC , BondPJ, SadowskiPGet al. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc. Natl Acad. Sci. USA109(15), E869–E878 (2012).
  • Papa FR , ZhangC, ShokatK, WalterP. Bypassing a kinase activity with an ATP-competitive drug. Science302(5650), 1533–1537 (2003).
  • Jha BK , PolyakovaI, KesslerPet al. Inhibition of RNase L and RNA-dependent protein kinase (PKR) by sunitinib impairs antiviral innate immunity. J. Biol. Chem.286(30), 26319–26326 (2011).
  • Tashiro E , HironiwaN, KitagawaMet al. Trierixin, a novel Inhibitor of ER stress-induced XBP1 activation from Streptomyces sp. 1. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. (Tokyo)60(9), 547–553 (2007).
  • Fribley AM , CruzPG, MillerJRet al. Complementary cell-based high-throughput screens identify novel modulators of the unfolded protein response. J. Biomol. Screen.16(8), 825–835 (2011).
  • Okada T , HazeK, NadanakaSet al. A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6. J. Biol. Chem.278(33), 31024–31032 (2003).
  • Guan M , FousekK, ChowWA. Nelfinavir inhibits regulated intramembrane proteolysis of sterol regulatory element binding protein-1 and activating transcription factor 6 in castration-resistant prostate cancer. FEBS J.279(13), 2399–2411 (2012).
  • Kast RE , BoockvarJA, BruningAet al. A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget4(4), 502–530 (2013).
  • Berg T . Inhibition of transcription factors with small organic molecules. Curr. Opin. Chem. Biol.12(4), 464–471 (2008).
  • Yeh TC , ChiangPC, LiTKet al. Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult. Biochem. Pharmacol.73(6), 782–792 (2007).
  • Cudna RE , DicksonAJ. Engineering responsiveness to cell culture stresses: growth arrest and DNA damage gene 153 (GADD153) and the unfolded protein response (UPR) in NS0 myeloma cells. Biotechnol. Bioeng.94(3), 514–521 (2006).
  • Dong H , ChenL, ChenXet al. Dysregulation of unfolded protein response partially underlies proapoptotic activity of bortezomib in multiple myeloma cells. Leuk. Lymphoma50(6), 974–984 (2009).
  • Ning J , HongT, WardAet al. Constitutive role for IRE1alpha-XBP1 signaling pathway in the insulin-mediated hepatic lipogenic program. Endocrinology152(6), 2247–2255 (2011).
  • Little JL , WheelerFB, FelsDR, KoumenisC, KridelSJ. Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells. Cancer Res.67(3), 1262–1269 (2007).
  • Klawitter J , KominskyDJ, BrownJLet al. Metabolic characteristics of imatinib resistance in chronic myeloid leukaemia cells. Br. J. Pharmacol.158(2), 588–600 (2009).