1,756
Views
11
CrossRef citations to date
0
Altmetric
Preliminary Communication

Conducting Polymer-Based Multilayer Films for Instructive Biomaterial Coatings

, , , , , , & show all
Article: FSO79 | Received 30 Jul 2015, Accepted 04 Sep 2015, Published online: 02 Nov 2015

References

  • Lutolf MP , HubbellJA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol.23(1), 47–55 (2005).
  • Edalat F , SheuI, ManoucheriS, KhademhosseiniA. Material strategies for creating artificial cell-instructive niches. Curr. Opin. Biotechnol.23(5), 820–825 (2012).
  • Rice JJ , MartinoMM, De LaporteL, TortelliF, BriquezPS, HubbellJA. Engineering the regenerative microenvironment with biomaterials. Adv. Healthc. Mater.2(1), 57–71 (2013).
  • Custódio CA , ReisRL, ManoJF. Engineering biomolecular microenvironments for cell instructive biomaterials. Adv. Healthc. Mater.3(6), 797–810 (2014).
  • Funk RH , MonseesT, OzkucurN. Electromagnetic effects – from cell biology to medicine. Prog. Histochem. Cytochem.43(4), 177–264 (2009).
  • Thompson DM , KoppesAN, HardyJG, SchmidtCE. Electrical stimuli in the central nervous system microenvironment. Annu. Rev. Biomed. Eng.16, 397–430 (2014).
  • Kriparamanan R , AswathP, ZhouA, TangL, NguyenKT. Nanotopography: cellular responses to nanostructured materials. J. Nanosci. Nanotechnol.6(7), 1905–1919 (2006).
  • Curtis A . The potential for the use of nanofeaturing in medical devices. Expert Rev. Med. Devices2(3), 293–301 (2005).
  • Spivey EC , KhaingZZ, ShearJB, SchmidtCE. The fundamental role of subcellular topography in peripheral nerve repair therapies. Biomaterials33(17), 4264–4276 (2012).
  • Bourget JM , GuillemetteM, VeresT, AugerFA, GermainL. Alignment of cells and extracellular matrix within tissue-engineered substitutes. In: Advances in Biomaterials Science and Biomedical Applications. PignatelloR ( Ed.). InTech (Online) (2013).
  • Hardy JG , LeeJY, SchmidtCE. Biomimetic conducting polymer-based tissue scaffolds. Curr. Opin. Biotechnol.24(5), 847–854 (2013).
  • Green RA , LovellNH, WallaceGG, Poole-WarrenLA. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials29(24–25), 3393–3399 (2008).
  • Svennersten K , LarssonKC, BerggrenM, Richter-DahlforsA. Organic bioelectronics in nanomedicine. Biochim. Biophys. Acta1810(3), 276–285 (2011).
  • Malliaras GG . Organic bioelectronics: a new era for organic electronics. Biochim. Biophys. Acta1830(9), 4286–4287 (2013).
  • Boudou T , CrouzierT, RenK, BlinG, PicartC. Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv. Mater.22(4), 441–467 (2010).
  • Shukla A , AlmeidaB. Advances in cellular and tissue engineering using layer-by-layer assembly. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.6(5), 411–421 (2014).
  • Vyas RN , WangB. Electrochemical analysis of conducting polymer thin films. Int. J. Mol. Sci.11(4), 1956–1972 (2010).
  • Mawad D , GilmoreK, MolinoPet al. An erodible polythiophene-based composite for biomedical applications. J. Mater. Chem.21, 5555–5560 (2011).
  • Mawad D , MolinoPJ, GambhirS, LockeJM, OfficerDL, WallaceGG. Electrically induced disassembly of electroactive multilayer films fabricated from water soluble polythiophenes. Adv. Funct. Mater.22(23), 5020–5027 (2012).
  • Cui H , WangY, CuiLet al. studies on regulation of osteogenic activities by electrical stimulus on biodegradable electroactive polyelectrolyte multilayers. Biomacromolecules15(8), 3146–3157 (2014).
  • Xiang S , XingG, XueW, LuC, LinJM. Comparison of two different deposition methods of 3-aminopropyltriethoxysilane on glass slides and their application in the ThinPrep cytologic test. Analyst137(7), 1669–1673 (2012).
  • Polar plot add in. www.andypope.info/charts/polarplot.htm.
  • Kros A , SommerdijkNAJM, NolteRJM. Poly (pyrrole) versus poly (3, 4-ethylenedioxythiophene): implications for biosensor applications. Sens. Actuators B.106(1), 289–295 (2005).
  • Zarogouldis P , KaramanosNK, PorpodisKet al. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology. Int. J. Mol. Sci.13(9), 10828–10862 (2012).
  • Xu Q , WangCW, PackDW. Polymeric carriers for gene delivery: chitosan and poly(amidoamine) dendrimers. Curr. Pharm. Des.16(21), 2350–2368 (2010).
  • Persson KM , GabrielssonR, SawatdeeA, NilssonD, KonradssonP, BerggrenM. Electronic control over detachment of a self-doped water-soluble conjugated polyelectrolyte. Langmuir30(21), 6257–6266 (2014).
  • Wang C , LauTT, LohWL, SuK, WangDA. Cytocompatibility study of a natural biomaterial crosslinker–Genipin with therapeutic model cells. J. Biomed. Mater. Res. B Appl. Biomater.97(1), 58–65 (2011).
  • Lai JY , LiYT, WangTP. In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers. Int. J. Mol. Sci.11(12), 5256–5272 (2010).
  • Lai JY . Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye. Int. J. Mol. Sci.13(9), 10970–10985 (2012).
  • Chen YS , ChangJY, ChengCY, TsaiFJ, YaoCH, LiuBS. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials26(18), 3911–3918 (2005).
  • Gabriel C , GabrielS, CorthoutE. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol.41(11), 2231–2249 (1996).
  • Hardy JG , PfaffA, Leal-EgañaA, MüllerAHE, ScheibelTR, Glycopolymer functionalization of engineered spider silk protein-based materials for improved cell adhesion. Macromol. Biosci.14, 936–942 (2014).
  • Hardy JG , CornelisonRC, SukhavasiRCet al. Electroactive tissue scaffolds with aligned pores as instructive platforms for biomimetic tissue engineering. Bioengineering2(1), 15–34 (2015).
  • Xu L , KozlovskayaV, KharlampievaE, AnknerJF, SukhishviliSA. Anisotropic diffusion of polyelectrolyte chains within multilayer films. ACS Macro Lett.1(1), 127–130 (2011).
  • Gibson IR , McCaigCD. Competitive guidance cues affect fibroblast cell alignment: electric fields vs. contact guidance. MRS Proc.845, AA1.8 (2005).
  • Yim EK , LeongKW. Significance of synthetic nanostructures in dictating cellular response. Nanomedicine1(1), 10–21 (2005).
  • Dunn GA , BrownAF. Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J. Cell. Sci.83, 313–340 (1986).
  • Tandon N , GohB, MarsanoAet al. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conf. Proc. IEEE Eng. Med. Biol. Soc.2009, 6517–6521 (2009).
  • Hardy JG , Villancio-WolterMK, SukhavasiRCet al. Electrical stimulation of human mesenchymal stem cells on conductive nanofibers enhances their differentiation toward osteogenic outcomes. Macromol. Rapid Commun. doi:10.1002/marc.201500233 (2015) ( Epub ahead of print).
  • Hardy JG , GeisslerSA, AguilarDJret al. Instructive conductive 3D silk foam-based bone tissue scaffolds enable electrical stimulation of stem cells for enhanced osteogenic differentiation. Macromol. Biosci. doi:10.1002/mabi.201500171 (2015) ( Epub ahead of print).