1,491
Views
13
CrossRef citations to date
0
Altmetric
Review

Germline Genetic Profiling in Prostate Cancer: Latest Developments and Potential Clinical Applications

&
Article: FSO87 | Received 20 Apr 2015, Accepted 10 Nov 2015, Published online: 18 Dec 2015

References

  • Ferlay J , ShinHR, BrayF, FormanD, MathersC, ParkinDM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer127(12), 2893–2917 (2010).
  • Prostate Cancer Incidence Statistics. www.cancerresearchuk.org/cancer-info/cancerstats/types/prostate/incidence/.
  • Marugame T , KatanodaK. International comparisons of cumulative risk of breast and prostate cancer, from cancer incidence in five continents Vol. VIII. Jpn J. Clin. Oncol.36(6), 399–400 (2006).
  • Lee J , DemissieK, LuSE, RhoadsGG. Cancer incidence among Korean-American immigrants in the United States and native Koreans in South Korea. Cancer Control14(1), 78–85 (2007).
  • Crawford ED . Epidemiology of prostate cancer. Urology62(6 Suppl. 1), 3–12 (2003).
  • Goh CL , SchumacherFR, EastonDet al. Genetic variants associated with predisposition to prostate cancer and potential clinical implications. J. Intern. Med.271(4), 353–365 (2012).
  • Bratt O . Hereditary prostate cancer: clinical aspects. J. Urol.168(3), 906–913 (2002).
  • Huang SP , HuangLC, TingWCet al. Prognostic significance of prostate cancer susceptibility variants on prostate-specific antigen recurrence after radical prostatectomy. Cancer Epidemiol. Biomarkers Prev.18(11), 3068–3074 (2009).
  • O'Brien JM . Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland, by P. Lichtenstein, NV Holm, PK Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, and K. Hemminki. N. Engl. J. Med. 343, 78–84 (2000). Surv. Ophthalmol.45(2), 167–168 (2000).
  • Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. www.dietandcancerreport.org/cancer_resource_center/downloads/Second_Expert_Report_full.pdf.
  • Vance TM , SuJ, FonthamET, KooSI, ChunOK. Dietary antioxidants and prostate cancer: a review. Nutr. Cancer65(6), 793–801 (2013).
  • Lippman SM , KleinEA, GoodmanPJet al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA301(1), 39–51 (2009).
  • Labbe DP , ZadraG, EbotEMet al. Role of diet in prostate cancer: the epigenetic link. Oncogene34(36), 4683–4691 (2015).
  • Chan JM , GannPH, GiovannucciEL. Role of diet in prostate cancer development and progression. J. Clin. Oncol.23(32), 8152–8160 (2005).
  • Trottier G , BostromPJ, LawrentschukN, FleshnerNE. Nutraceuticals and prostate cancer prevention: a current review. Nat. Rev. Urol.7(1), 21–30 (2010).
  • Wilson KM , GiovannucciEL, MucciLA. Lifestyle and dietary factors in the prevention of lethal prostate cancer. Asian J. Androl.14(3), 365–374 (2012).
  • Tio M , AndriciJ, CoxMR, EslickGD. Folate intake and the risk of prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis.17(3), 213–219 (2014).
  • John EM , KooJ, SchwartzGG. Sun exposure and prostate cancer risk: evidence for a protective effect of early-life exposure. Cancer Epidemiol. Biomarkers Prev.16(6), 1283–1286 (2007).
  • Carter BS , BeatyTH, SteinbergGD, ChildsB, WalshPC. Mendelian inheritance of familial prostate cancer. Proc. Natl Acad. Sci. USA89(8), 3367–3371 (1992).
  • Cui J , AntoniouAC, DiteGSet al. After BRCA1 and BRCA2-what next? Multifactorial segregation analyses of three-generation, population-based Australian families affected by female breast cancer. Am. J. Hum. Genet.68(2), 420–431 (2001).
  • Gronberg H , DamberL, DamberJE, IseliusL. Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am. J. Epidemiol.146(7), 552–557 (1997).
  • Macinnis RJ , AntoniouAC, EelesRAet al. Prostate cancer segregation analyses using 4390 families from UK and Australian population-based studies. Genet. Epidemiol.34(1), 42–50 (2010).
  • Schaid DJ . Transmission disequilibrium, family controls, and great expectations. Am. J. Hum. Genet.63(4), 935–941 (1998).
  • Xu J , DimitrovL, ChangBLet al. A combined genomewide linkage scan of 1,233 families for prostate cancer-susceptibility genes conducted by the international consortium for prostate cancer genetics. Am. J. Hum. Genet.77(2), 219–229 (2005).
  • Maier C , HaeuslerJ, HerkommerKet al. Mutation screening and association study of RNASEL as a prostate cancer susceptibility gene. Br. J. Cancer92(6), 1159–1164 (2005).
  • Hope Q , BullockS, EvansCet al. Macrophage scavenger receptor 1 999C>T (R293X) mutation and risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev.14(2), 397–402 (2005).
  • Wiklund F , JonssonBA, BrookesAJet al. Genetic analysis of the RNASEL gene in hereditary, familial, and sporadic prostate cancer. Clin. Cancer. Res.10(21), 7150–7156 (2004).
  • Gong G , Oakley-GirvanI, WuAHet al. Segregation analysis of prostate cancer in 1,719 white, African-American and Asian-American families in the United States and Canada. Cancer Causes Control13(5), 471–482 (2002).
  • The International HapMap Project. Nature426(6968), 789–796 (2003).
  • A haplotype map of the human genome. Nature437(7063), 1299–1320 (2005).
  • Chung CC , MagalhaesWC, Gonzalez-BosquetJ, ChanockSJ. Genome-wide association studies in cancer–current and future directions. Carcinogenesis31(1), 111–120 (2010).
  • Eeles RK-JZGM , EastonD. The Identification Of Rare And Common Variants Which Predispose To Prostate Cancer. Springer, 229–48 (2010).
  • Cybulski C , HuzarskiT, GorskiBet al. A novel founder CHEK2 mutation is associated with increased prostate cancer risk. Cancer Res.64(8), 2677–2679 (2004).
  • Cybulski C , WokolorczykD, HuzarskiTet al. A large germline deletion in the Chek2 kinase gene is associated with an increased risk of prostate cancer. J. Med. Genet.43(11), 863–866 (2006).
  • Erkko H , XiaB, NikkilaJet al. A recurrent mutation in PALB2 in Finnish cancer families. Nature446(7133), 316–319 (2007).
  • Thompson D , SealS, SchutteMet al. A multicenter study of cancer incidence in CHEK2 1100delC mutation carriers. Cancer Epidemiol. Biomarkers Prev.15(12), 2542–2545 (2006).
  • Tischkowitz M , SabbaghianN, RayAM, LangeEM, FoulkesWD, CooneyKA. Analysis of the gene coding for the BRCA2-interacting protein PALB2 in hereditary prostate cancer. Prostate68(6), 675–678 (2008).
  • Risch NJ . Searching for genetic determinants in the new millennium. Nature405(6788), 847–856 (2000).
  • Risch N , MerikangasK. The future of genetic studies of complex human diseases. Science273(5281), 1516–1517 (1996).
  • Levy S , SuttonG, NgPCet al. The diploid genome sequence of an individual human. PLoS Biol.5(10), e254 (2007).
  • Abecasis GR , AutonA, BrooksLDet al. An integrated map of genetic variation from 1,092 human genomes. Nature491(7422), 56–65 (2012).
  • Kruglyak L , NickersonDA. Variation is the spice of life. Nat. Genet.27(3), 234–236 (2001).
  • Fitzgerald LM , McdonnellSK, CarlsonEEet al. Genome-wide linkage analyses of hereditary prostate cancer families with colon cancer provide further evidence for a susceptibility locus on 15q11-q14. Eur. J. Hum. Genet.18(10), 1141–1147 (2010).
  • Freedman ML , MonteiroAN, GaytherSAet al. Principles for the post-GWAS functional characterization of cancer risk loci. Nat. Genet.43(6), 513–518 (2011).
  • Hazelett DJ , RhieSK, GaddisMet al. Comprehensive functional annotation of 77 prostate cancer risk loci. PLoS Genet.10(1), e1004102 (2014).
  • Bonnen PE , WangPJ, KimmelM, ChakrabortyR, NelsonDL. Haplotype and linkage disequilibrium architecture for human cancer-associated genes. Genome Res.12(12), 1846–1853 (2002).
  • Eeles RA , Kote-JaraiZ, GilesGGet al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet.40(3), 316–321 (2008).
  • Hoffmann TJ , ZhanY, KvaleMNet al. Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm. Genomics98(6), 422–430 (2011).
  • A Catalog of Published Genone Wide Asssociation Studies. www.genome.gov/26525384.
  • Xu J , MoZ, YeDet al. Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31.2 and 19q13.4. Nat. Genet.44(11), 1231–1235 (2012).
  • Takata R , AkamatsuS, KuboMet al. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat. Genet.42(9), 751–754 (2010).
  • Sun J , ZhengSL, WiklundFet al. Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res.69(1), 10–15 (2009).
  • Haiman CA , ChenGK, BlotWJet al. Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat. Genet.43(6), 570–573 (2011).
  • Gudmundsson J , SulemP, GudbjartssonDFet al. Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat. Genet.41(10), 1122–1126 (2009).
  • Berndt SI , SampsonJ, YeagerMet al. Large-scale fine mapping of the HNF1B locus and prostate cancer risk. Hum. Mol. Genet.20(16), 3322–3329 (2011).
  • Akamatsu S , TakataR, HaimanCAet al. Common variants at 11q12, 10.26 and 3p11.2 are associated with prostate cancer susceptibility in Japanese. Nat. Genet.44(4), 426–429, s421 (2012).
  • Yeager M , OrrN, HayesRBet al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet.39(5), 645–649 (2007).
  • Thomas G , JacobsKB, YeagerMet al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet.40(3), 310–315 (2008).
  • Sun J , ZhengSL, WiklundFet al. Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12. Nat. Genet.40(10), 1153–1155 (2008).
  • Schumacher FR , BerndtSI, SiddiqAet al. Genome-wide association study identifies new prostate cancer susceptibility loci. Hum. Mol. Genet.20(19), 3867–3875 (2011).
  • Gudmundsson J , SulemP, SteinthorsdottirVet al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat. Genet.39(8), 977–983 (2007).
  • Gudmundsson J , SulemP, ManolescuAet al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet.39(5), 631–637 (2007).
  • Duggan D , ZhengSL, KnowltonMet al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J. Natl Cancer Inst.99(24), 1836–1844 (2007).
  • Amundadottir LT , SulemP, GudmundssonJet al. A common variant associated with prostate cancer in European and African populations. Nat. Genet.38(6), 652–658 (2006).
  • Kote-Jarai Z , SaundersEJ, LeongamornlertDAet al. Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression. Hum. Mol. Genet.22(12), 2520–2528 (2013).
  • Kote-Jarai Z , OlamaAA, GilesGGet al. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat. Genet.43(8), 785–791 (2011).
  • Gudmundsson J , SulemP, RafnarTet al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat. Genet.40(3), 281–283 (2008).
  • Eeles RA , OlamaAA, BenllochSet al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat. Genet.45(4), 385–391, 391e381–382 (2013).
  • Al Olama AA , Kote-JaraiZ, BerndtSIet al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat. Genet.46(10), 1103–1109 (2014).
  • Hsu FC , SunJ, WiklundFet al. A novel prostate cancer susceptibility locus at 19q13. Cancer Res.69(7), 2720–2723 (2009).
  • Amin Al Olama A , Kote-JaraiZ, SchumacherFRet al. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Hum. Mol. Genet.22(2), 408–415 (2013).
  • Al Olama AA , Kote-JaraiZ, GilesGGet al. Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat. Genet.41(10), 1058–1060 (2009).
  • Ahmadiyeh N , PomerantzMM, GrisanzioCet al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc. Natl Acad. Sci. USA107(21), 9742–9746 (2010).
  • Eeles RA , Kote-JaraiZ, Al OlamaAAet al. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat. Genet.41(10), 1116–1121 (2009).
  • Kote-Jarai Z , LeongamornlertD, TymrakiewiczMet al. Mutation analysis of the MSMB gene in familial prostate cancer. Br. J. Cancer102(2), 414–418 (2010).
  • Garde SV , BasrurVS, LiLet al. Prostate secretory protein (PSP94) suppresses the growth of androgen-independent prostate cancer cell line (PC3) and xenografts by inducing apoptosis. Prostate38(2), 118–125 (1999).
  • Bjartell A . PSA and prostate cancer screening: the challenge of the new millennium. Eur. Urol.52(5), 1284–1286 (2007).
  • Reeves JR , DuludeH, PanchalC, DaigneaultL, RamnaniDM. Prognostic value of prostate secretory protein of 94 amino acids and its binding protein after radical prostatectomy. Clin. Cancer. Res.12(20 Pt 1), 6018–6022 (2006).
  • Whitaker HC , Kote-JaraiZ, Ross-AdamsHet al. The rs10993994 risk allele for prostate cancer results in clinically relevant changes in microseminoprotein-beta expression in tissue and urine. PLoS ONE5(10), e13363 (2010).
  • Cramer SD , ChangBL, RaoAet al. Association between genetic polymorphisms in the prostate-specific antigen gene promoter and serum prostate-specific antigen levels. J. Natl Cancer Inst.95(14), 1044–1053 (2003).
  • Kote-Jarai Z , Amin Al OlamaA, LeongamornlertDet al. Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript. Hum. Genet.129(6), 687–694 (2011).
  • Vickers AJ , CroninAM, AusGet al. A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data from the European Randomized Study of Prostate Cancer Screening in Goteborg, Sweden. BMC Med.6, 19 (2008).
  • Manolio TA , CollinsFS, CoxNJet al. Finding the missing heritability of complex diseases. Nature461(7265), 747–753 (2009).
  • Thompson D , EastonD. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am. J. Hum. Genet.68(2), 410–419 (2001).
  • Kote-Jarai Z , LeongamornlertD, SaundersEet al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br. J. Cancer105(8), 1230–1234 (2011).
  • Leongamornlert D , MahmudN, TymrakiewiczMet al. Germline BRCA1 mutations increase prostate cancer risk. Br. J. Cancer106(10), 1697–1701 (2012).
  • Robinson D , Van AllenEM, WuYMet al. Integrative clinical genomics of advanced prostate cancer. Cell161(5), 1215–1228 (2015).
  • Narod SA , NeuhausenS, VichodezGet al. Rapid progression of prostate cancer in men with a BRCA2 mutation. Br. J. Cancer99(2), 371–374 (2008).
  • Tryggvadottir L , VidarsdottirL, ThorgeirssonTet al. Prostate cancer progression and survival in BRCA2 mutation carriers. J. Natl Cancer Inst.99(12), 929–935 (2007).
  • Castro E , GohC, OlmosDet al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J. Clin. Oncol.31(14), 1748–1757 (2013).
  • Castro E , GohC, LeongamornlertDet al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur. Urol.68(2), 186–193 (2015).
  • Economides KD , CapecchiMR. Hoxb13 is required for normal differentiation and secretory function of the ventral prostate. Development130(10), 2061–2069 (2003).
  • Kim YR , OhKJ, ParkRYet al. HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling. Mol. Cancer9, 124 (2010).
  • Xu J , LangeEM, LuLet al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum. Genet.132(1), 5–14 (2013).
  • Eeles R , GohC, CastroEet al. The genetic epidemiology of prostate cancer and its clinical implications. Nat. Rev. Urol.11(1), 18–31 (2013).
  • Bloss CS , DarstBF, TopolEJ, SchorkNJ. Direct-to-consumer personalized genomic testing. Hum. Mol. Genet.20(R2), R132–R141 (2011).
  • Macinnis RJ , AntoniouAC, EelesRAet al. A risk prediction algorithm based on family history and common genetic variants: application to prostate cancer with potential clinical impact. Genet. Epidemiol.35(6), 549–556 (2011).
  • Chou R , CroswellJM, DanaTet al. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann. Intern. Med.155(11), 762–771 (2011).
  • Burford Dc KM , AustokerJ. Prostate cancer risk management programme: information for primary care; PSA testing in asymptomatic men (2009). www.gov.scot/resource/doc/1094/0088915.pdf.
  • Schroder FH , HugossonJ, RoobolMJet al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med.360(13), 1320–1328 (2009).
  • Hugosson J , CarlssonS, AusGet al. Mortality results from the Goteborg randomised population-based prostate-cancer screening trial. Lancet Oncol.11(8), 725–732 (2010).
  • Andriole GL , CrawfordED, GrubbRLet al. Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: mortality results after 13 years of follow-up. J. Natl Cancer Inst.104(2), 125–132 (2012).
  • Pisansky TM . External-beam radiotherapy for localized prostate cancer. N. Engl. J. Med.355(15), 1583–1591 (2006).
  • Barnett GC , WestCM, DunningAMet al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat. Rev. Cancer9(2), 134–142 (2009).
  • Bentzen SM . Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer6(9), 702–713 (2006).
  • Kerns SL , OstrerH, StockRet al. Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys.78(5), 1292–1300 (2010).
  • Kerns SL , StockR, StoneNet al. A 2-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of erectile dysfunction following radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys.85(1), e21–e28 (2013).
  • Kerns SL , StoneNN, StockRG, RathL, OstrerH, RosensteinBS. A 2-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of urinary symptoms after radiotherapy for prostate cancer. J. Urol.190(1), 102–108 (2013).
  • West C , RosensteinBS, AlsnerJet al. Establishment of a radiogenomics consortium. Int. J. Radiat. Oncol. Biol. Phys.76(5), 1295–1296 (2010).
  • Huang SP , TingWC, ChenLMet al. Association analysis of Wnt pathway genes on prostate-specific antigen recurrence after radical prostatectomy. Ann. Surg. Oncol.17(1), 312–322 (2010).
  • Strom SS , GuY, ZhangHet al. Androgen receptor polymorphisms and risk of biochemical failure among prostatectomy patients. Prostate60(4), 343–351 (2004).
  • Kantoff PW , HiganoCS, ShoreNDet al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med.363(5), 411–422 (2010).
  • Audet-Walsh E , BellemareJ, NadeauGet al. SRD5A polymorphisms and biochemical failure after radical prostatectomy. Eur. Urol.60(6), 1226–1234 (2011).
  • Larson BT , Magi-GalluzziC, CaseyG, PlummerSJ, SilvermanR, KleinEA. Pathological aggressiveness of prostatic carcinomas related to RNASEL R462Q allelic variants. J. Urol.179(4), 1344–1348 (2008).
  • Dluzniewski PJ , WangMH, ZhengSLet al. Variation in IL10 and other genes involved in the immune response and in oxidation and prostate cancer recurrence. Cancer Epidemiol. Biomarkers Prev.21(10), 1774–1782 (2012).
  • Morote J , Del AmoJ, BorqueAet al. Improved prediction of biochemical recurrence after radical prostatectomy by genetic polymorphisms. J. Urol.184(2), 506–511 (2010).
  • Watanabe M , UshijimaT, ShiraishiTet al. Genetic alterations of androgen receptor gene in Japanese human prostate cancer. Jpn. J. Clin. Oncol.27(6), 389–393 (1997).
  • Hirata H , HinodaY, KikunoNet al. Bcl2 -938C/A polymorphism carries increased risk of biochemical recurrence after radical prostatectomy. J. Urol.181(4), 1907–1912 (2009).
  • Whitman EJ , PomerantzM, ChenYet al. Prostate cancer risk allele specific for African descent associates with pathologic stage at prostatectomy. Cancer Epidemiol. Biomarkers Prev.19(1), 1–8 (2010).
  • Kader AK , SunJ, IsaacsSDet al. Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate69(11), 1195–1205 (2009).
  • Smith MR . Androgen deprivation therapy for prostate cancer: new concepts and concerns. Curr. Opin. Endocrinol. Diabetes Obes.14(3), 247–254 (2007).
  • Lindstrom S , AdamiHO, BalterKAet al. Inherited variation in hormone-regulating genes and prostate cancer survival. Clin. Cancer. Res.13(17), 5156–5161 (2007).
  • Maki HE , WalteringKK, WallenMJet al. Screening of genetic and expression alterations of SRC1 gene in prostate cancer. Prostate66(13), 1391–1398 (2006).
  • Yang M , XieW, MostaghelEet al. SLCO2B1 and SLCO1B3 may determine time to progression for patients receiving androgen deprivation therapy for prostate cancer. J. Clin. Oncol.29(18), 2565–2573 (2011).
  • Huang CN , HuangSP, PaoJBet al. Genetic polymorphisms in androgen receptor-binding sites predict survival in prostate cancer patients receiving androgen-deprivation therapy. Ann. Oncol.23(3), 707–713 (2012).
  • Sun T , LeeGS, WernerLet al. Inherited variations in AR, ESR1, and ESR2 genes are not associated with prostate cancer aggressiveness or with efficacy of androgen deprivation therapy. Cancer Epidemiol. Biomarkers Prev.19(7), 1871–1878 (2010).
  • Tannock IF , De WitR, BerryWRet al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med.351(15), 1502–1512 (2004).
  • Sissung TM , DanesiR, PriceDKet al. Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel. Mol. Cancer Ther.7(1), 19–26 (2008).
  • Narita S , TsuchiyaN, YuasaTet al. Outcome, clinical prognostic factors and genetic predictors of adverse reactions of intermittent combination chemotherapy with docetaxel, estramustine phosphate and carboplatin for castration-resistant prostate cancer. Int. J. Clin. Oncol.17(3), 204–211 (2012).
  • Chi KN , HotteSJ, YuEYet al. Randomized phase II study of docetaxel and prednisone with or without OGX–011 in patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol.28(27), 4247–4254 (2010).
  • Chan JM , GiovannucciEL. Dairy products, calcium, and vitamin D and risk of prostate cancer. Epidemiol. Rev.23(1), 87–92 (2001).
  • Kolonel LN . Fat, meat, and prostate cancer. Epidemiol. Rev.23(1), 72–81 (2001).
  • Giovannucci E . Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J. Natl Cancer Inst.91(4), 317–331 (1999).
  • Thompson IM , GoodmanPJ, TangenCMet al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med.349(3), 215–224 (2003).
  • Madersbacher S . Words of wisdom. Re: Effect of dutasteride on the risk of prostate cancer. Andriole GL, Bostwick DG, Brawley OW et al. REDUCE Study Group. N Engl J Med 2010;362:1192–202. Eur. Urol.58(2), 312 (2010).
  • Walsh PC . Chemoprevention of prostate cancer. N. Engl. J. Med.362(13), 1237–1238 (2010).
  • Castro E , GohC, LeongamornlertDet al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur. Urol.68(2), 186–193 (2014).
  • ELLIPSE (Elucidating Loci Involved in Prostate Cancer Susceptibility). http://maps.cancer.gov/overview/DCCPSGrants/abstract.jsp?applId=8540134&term=CA148537.
  • National Cancer Institute . Breast and Prostate Cancer Consortium (Online) (BPC3). http://epi.grants.cancer.gov/BPC3/.
  • Karolinska Institute . Cancer in the Prostate (Caps). http://ki.se/en/meb/cancer-of-the-prostate-in-sweden-caps.
  • National Institue fo Health . Cancer Genetic Markers of Susceptibility (CGEMS). http://dceg.cancer.gov/research/how-we-study/genomic-studies/cgems-summary.
  • Natioanl Institute of Health . Elucidating Loci Involved In Prostate Cancer Susceptibility (ELLIPSE). http://epi.grants.cancer.gov/gameon/.
  • International Consortium for Prostate Cancer Genetics (ICPCG) . www.icpcg.org/.
  • The Identification of Men with a Genetic Predisposition to Prostate Cancer: Targeted Screening in BRCA1/BRCA2 mutation carriers and controls. www.impact-study.co.uk/.
  • NIH . Men of African Descent and Carcinoma of the Prostate Consortium. http://epi.grants.cancer.gov/madcap/.
  • Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL). http://practical.ccge.medschl.cam.ac.uk/.
  • Germline Genetic Profiling: Correlation with Targeted Prostate Cancer Screening and Treatment. www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-study-find-out-looking-gene-changes-would-be-useful-in-screening-for-prostate-cancer-profile-pilot.