1,543
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Supramolecular Polymer Formation By Cyclic Dinucleotides and Intercalators Affects Dinucleotide Enzymatic Processing

, , , &
Article: FSO93 | Received 09 Dec 2015, Accepted 09 Dec 2015, Published online: 29 Jan 2016

References

  • Kalia D , MereyG, NakayamaSet al. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem. Soc. Rev.42(1), 305–341 (2013).
  • Zhang Z , KimS, GaffneyBL, JonesRA. Polymorphism of the signaling molecule c-di-GMP. J. Am. Chem. Soc.128(21), 7015–7024 (2006).
  • Nakayama S , KelseyI, WangJet al. Thiazole orange-induced c-di-GMP quadruplex formation facilitates a simple fluorescent detection of this ubiquitous biofilm regulating molecule. J. Am. Chem. Soc.133(13), 4856–4864 (2011).
  • Gentner M , AllanMG, ZaehringerF, SchirmerT, GrzesiekS. Oligomer formation of the bacterial second messenger c-di-GMP: reaction rates and equilibrium constants indicate a monomeric state at physiological concentrations. J. Am. Chem. Soc.134(2), 1019–1029 (2012).
  • De N , NavarroMV, RaghavanRV, SondermannH. Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR. J. Mol. Biol.393(3), 619–633 (2009).
  • Sundriyal A , MassaC, SamorayDet al. Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger c-di-GMP. J. Biol. Chem.289(10), 6978–6990 (2014).
  • Tschowri N , SchumacherMA, SchlimpertSet al. Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell158(5), 1136–1147 (2014).
  • Wassmann P , ChanC, PaulRet al. Structure of BeF3--modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure15(8), 915–927 (2007).
  • Zhou J , SayreDA, ZhengY, SzmacinskiH, SintimHO. Unexpected complex formation between coralyne and cyclic diadenosine monophosphate providing a simple fluorescent turn-on assay to detect this bacterial second messenger. Anal. Chem.86(5), 2412–2420 (2014).
  • Luo D , SaltzmanWM. Synthetic DNA delivery systems. Nat. Biotechnol.18(1), 33–37 (2000).
  • Krishnan Y , SimmelFC. Nucleic acid based molecular devices. Angew. Chem. Int. Ed. Engl.50(14), 3124–3156 (2011).
  • Gellert M , LipsettMN, DaviesDR. Helix formation by guanylic acid. Proc. Natl Acad. Sci. USA48, 2013–2018 (1962).
  • Walmsley JA , BurnettJF. A new model for the K+-induced macromolecular structure of guanosine 5′-monophosphate in solution. Biochemistry38(42), 14063–14068 (1999).
  • Ghana R , WalssC, WalmsleyJA. Sodium and potassium ion-promoted formation of supramolecular aggregates of 2′-deoxyguanylyl-(3′-5′)-2′-deoxyguanosine. J. Biomol. Struct. Dyn.14(1), 101–110 (1996).
  • Mariani P , MazabardC, GarbesiA, SpadaG. A study of the structure of the lyomesophases formed by the dinucleoside phosphate d(GpG) – an approach by X-ray-diffraction and optical microscopy. J. Am. Chem. Soc.111(16), 6369–6373 (1989).
  • Pinnavaia TJ , MilesHT, BeckerED. Letter: self-assembled 5′-guanosine monophosphate. Nuclear magnetic resonance evidence for a regular, ordered structure and slow chemical exchange. J. Am. Chem. Soc.97(24), 7198–7200 (1975).
  • Sasisekharan V , ZimmermanS, DaviesDR. The structure of helical 5′-guanosine monophosphate. J. Mol. Biol.92(2), 171–179 (1975).
  • Guo P . The emerging field of RNA nanotechnology. Nat. Nanotechnol.5(12), 833–842 (2010).
  • Neogi A , LiJ, NeogiP, SarkarA, MorkocH. Self-assembled modified deoxyguanosines conjugated to GaN quantum dots for biophotonic applications. Electron. Lett.40(25), 1605–1606 (2004).
  • Cai M , SidorovV, LamYF, FlowersRA, DavisJT. Guest and subunit exchange in self-assembled ionophores. Org. Lett.2(12), 1665–1668 (2000).
  • Davis JT , SpadaGP. Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem. Soc. Rev.36(2), 296–313 (2007).
  • Liaw YC , GaoYG, RobinsonHet al. Cyclic diguanylic acid behaves as a host molecule for planar intercalators. FEBS Lett.264(2), 223–227 (1990).
  • Nakayama S , KelseyI, WangJ, SintimHO. c-di-GMP can form remarkably stable G-quadruplexes at physiological conditions in the presence of some planar intercalators. Chem. Commun. (Camb.)47(16), 4766–4768 (2011).
  • Nakayama S , RoelofsK, LeeVT, SintimHO. A c-di-GMP-proflavine-hemin supramolecular complex has peroxidase activity-implication for a simple colorimetric detection. Mol. Biosyst.8(3), 726–729 (2012).
  • Kelsey I , NakayamaS, SintimHO. Diamidinium and iminium aromatics as new aggregators of the bacterial signaling molecule, c-di-GMP. Bioorg. Med. Chem. Lett.22(2), 881–885 (2012).
  • Schirmer T , JenalU. Structural and mechanistic determinants of c-di-GMP signalling. Nat. Rev. Microbiol.7(10), 724–735 (2009).
  • Musetti C , KrapchoAP, PalumboM, SissiC. Effect of G-quadruplex polymorphism on the recognition of telomeric DNA by a metal complex. PLoS ONE8(3), e58529 (2013).
  • Wang H , MaoD, WangYet al. Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications. Sci. Rep.5, 16680 (2015).
  • Abet V , RodriguezR. Guanosine and isoguanosine derivatives for supramolecular devices. New J. Chem.38(11), 5122–5128 (2014).
  • Rusu BG , CuninF, BarboiuM. Real-time optical detection of stabilized artificial G-quadruplexes under confined conditions. Angew. Chem. Int. Ed. Engl.52(48), 12597–12601 (2013).
  • Haudecoeur R , StefanL, MonchaudD. Multitasking water-soluble synthetic G-quartets: from preferential RNA-quadruplex interaction to biocatalytic activity. Chemistry19(38), 12739–12747 (2013).
  • Buerkle LE , RowanSJ. Supramolecular gels formed from multi-component low molecular weight species. Chem. Soc. Rev.41(18), 6089–6102 (2012).
  • Benvin AL , CreegerY, FisherGW, BallouB, WaggonerAS, ArmitageBA. Fluorescent DNA nanotags: supramolecular fluorescent labels based on intercalating dye arrays assembled on nanostructured DNA templates. J. Am. Chem. Soc.129(7), 2025–2034 (2007).
  • Values are obtained from PDB structures 3EM2, 1KBP, 3Q5C, 3MIJ, 4DA3, 3TVB, 4XK0, 2LE6, 3NZ7, 2KBP.
  • Gavathiotis E , HealdRA, StevensMF, SearleMS. Drug recognition and stabilisation of the parallel-stranded DNA quadruplex d(TTAGGGT)4 containing the human telomeric repeat. J. Mol. Biol.334(1), 25–36 (2003).
  • Hounsou C , GuittatL, MonchaudDet al. G-quadruplex recognition by quinacridines: a SAR, NMR, and biological study. ChemMedChem2(5), 655–666 (2007).
  • Marsh TC , VesenkaJ, HendersonE. A new DNA nanostructure, the G-wire, imaged by scanning probe microscopy. Nucleic Acids Res.23(4), 696–700 (1995).
  • Hightower JB , OlmosDR, WalmsleyJA. Supramolecular structure and polymorphism of alkali metal salts of guanosine 5′monophosphate: SEM and NMR study. J. Phys. Chem. B113(36), 12214–12219 (2009).
  • Lubitz I , ZikichD, KotlyarA. Specific high-affinity binding of thiazole orange to triplex and G-quadruplex DNA. Biochemistry49(17), 3567–3574 (2010).
  • Tran PL , LargyE, HamonF, Teulade-FichouMP, MergnyJL. Fluorescence intercalator displacement assay for screening G4 ligands towards a variety of G-quadruplex structures. Biochimie93(8), 1288–1296 (2011).
  • Algar WR , MasseyM, KrullUJ. Fluorescence resonance energy transfer and complex formation between thiazole orange and various dye-DNA conjugates: implications in signaling nucleic acid hybridization. J. Fluoresc.16(4), 555–567 (2006).
  • Lane AN , ChairesJB, GrayRD, TrentJO. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res.36(17), 5482–5515 (2008).
  • Belmont P , BossonJ, GodetT, TianoM. Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now?Anticancer Agents Med. Chem.7(2), 139–169 (2007).
  • Wainwright M . Acridine: a neglected antibacterial chromophore. J. Antimicrob. Chemother.47(1), 1–13 (2001).
  • Rao F , SeeRY, ZhangD, TohDC, JiQ, LiangZX. YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J. Biol. Chem.285(1), 473–482 (2010).
  • Ferguson LR , DennyWA. Genotoxicity of non-covalent interactions: DNA intercalators. Mutat. Res.623(1–2), 14–23 (2007).
  • Wu J , SunL, ChenXet al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science339(6121), 826–830 (2013).
  • Gaffney BL , VeliathE, ZhaoJ, JonesRA. One-flask syntheses of c-di-GMP and the [Rp, Rp] and [Rp, Sp] thiophosphate analogues. Org. Lett.12(14), 3269–3271 (2010).
  • Zheng Y , ZhouJ, CooperSM, Opoku-TemengC, Moreira De BritoA, SintimHO. Structure–activity relationship studies of c-di-AMP synthase inhibitor, bromophenol-thiohydantoin. Tetrahedron doi:10.1016/j.tet.2015.10.073 (2015) ( Epub ahead of print).
  • Drlica K , ZhaoX. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev.61(3), 377–392 (1997).