1,130
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the Activation Routes Induced By Different Metal Oxide Nanoparticles On Human Lung Epithelial Cells

, , &
Article: FSO118 | Accepted 08 Jan 2016, Published online: 15 Apr 2016

References

  • Card JW , ZeldinDC, BonnerJC, NestmannER. Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. Lung Cell Mol. Physiol.295(3), L400–L411 (2008).
  • Maynard AD , AitkenRJ. Assessing exposure to airborne nanomaterials: current abilities and future requirements. Nanotoxicology1(1), 26–41 (2007).
  • Stern ST , McneilSE. Nanotechnology safety concerns revisited. Toxicol. Sci.101(1), 4–21 (2008).
  • Bermudez E , MangumJB, WongBAet al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol. Sci.77(2), 347–357 (2004).
  • Warheit DB , HokeRA, FinlayC, DonnerEM, ReedKL, SayesCM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol. Lett.171(3), 99–110 (2007).
  • Grassian VH , O’shaughnessy, Adamcakova-DoddA, PettiboneJM, ThornePS. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health Perspect.115(3), 397–402 (2007).
  • Warheit DB . Nanoparticles: health impacts?Mater. Today7(2), 32–35 (2004).
  • Song Y , LiX, DuX. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur. Respir. J.34(3), 559–567 (2009).
  • Li JJE , MuralikrishnanS, NgC-T, YungL-YL, BayB-H. Nanoparticle-induced pulmonary toxicity. Exp. Biol. Med. (Maywood)235(9), 1025–1033 (2010).
  • Fujii T , HayashiS, HoggJC, VincentR, Van EedenSF. Particulate matter induces cytokine expression in human bronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol.25(3), 265–271 (2001).
  • Park E-J , YoonJ, ChoiK, YiJ, ParkK. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology260(1–3), 37–46 (2009).
  • Mossman BT , BormPJ, CastranovaV, CostaDL, DonaldsonK, KleebergerSR. Mechanisms of action of inhaled fibers, particles and nanoparticles in lung and cardiovascular diseases. Part. Fibre Toxicol.4(4), 8974–8977 (2007).
  • Mroz RM , SchinsRPF, LiHet al. Nanoparticle-driven DNA damage mimics irradiation-related carcinogenesis pathways. Eur. Respir. J.31(2), 241–251 (2008).
  • Bakand S , HayesA, DechsakulthornF. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhalation Toxicol.24(2), 125–135 (2012).
  • Veranth JM , KaserEG, VeranthMM, KochM, YostGS. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared with soil dusts. Part. Fibre Toxicol.4, 2–2 (2007).
  • Sydlik U , BierhalsK, SoufiM, AbelJ, SchinsRPF, UnfriedK. Ultrafine carbon particles induce apoptosis and proliferation in rat lung epithelial cells via specific signaling pathways both using EGF-R. Am. J. Physiol. Lung Cell Mol. Physiol.291(4), L725–L733 (2006).
  • Mossman BT , LounsburyKM, ReddySP. Oxidants and signaling by mitogen-activated protein kinasis in lung epithelium. Am. J. Respir. Cell Mol. Biol.34(6), 666–669 (2006).
  • Unfried K , AlbrechtC, KlotzLO, Von MikeczA, Grether-BeckS, SchinsRPF. Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology1(1), 52–71 (2007).
  • Abdelmohsen K , GerberPA, Von MontfortC, SiesH, KlotzL-O. Epidermal growth factor receptor is a common mediator of quinone-induced signaling leading to phosphorylation of connexin-43: role of glutathione and tyrosine phosphatases. J. Biol. Chem.278(40), 38360–38367 (2003).
  • Rayet B , GélinasC. Aberrant rel/nfkb genes and activity in human cancer. Oncogene18(49), 6938–6947 (1999).
  • Wright J , ChristmanJ. The role of nuclear factor kappa B in the pathogenesis of pulmonary diseases: implications for therapy. Am. J. Respir. Med.2(3), 211–219 (2003).
  • Schwartz MD , MooreEE, MooreFAet al. Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit. Care Med.24(8), 1285–1292 (1996).
  • Edwards MR , BartlettNW, ClarkeD, BirrellM, BelvisiM, JohnstonSL. Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol. Therapeut.121(1), 1–13 (2009).
  • Meyer K , RajanahalliP, AhamedM, RoweJJ, HongY. ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicol. In Vitro25(8), 1721–1726 (2011).
  • Cheng G , GuoW, HanLet al. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol. In Vitro27(3), 1082–1088 (2013).
  • Liu X , SunJ. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways. Biomaterials31(32), 8198–8209 (2010).
  • Goncalves D , ChiassonS, GirardD. Activation of human neutrophils by titanium dioxide (TiO2) nanoparticles. Toxicol. In Vitro24(3), 1002–1008 (2010).
  • Park E-J , YiJ, ChungK-H, RyuD-Y, ChoiJ, ParkK. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett.180(3), 222–229 (2008).
  • Krüger K , CossaisF, NeveH, KlemptM. Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells. J. Nanopart. Res.16(5), 1–12 (2014).
  • Matsuda A , SuzukiY, HondaGet al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene22(21), 3307–3318 (2003).
  • Kim Y-M , ReedW, LenzAGet al. Ultrafine carbon particles induce interleukin-8 gene transcription and p38 MAPK activation in normal human bronchial epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol.288(3), L432–L441 (2005).
  • Wu W , SametJM, PedenDB, BrombergPA. Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells. Environ. Health Perspect.118(7), 982–987 (2010).
  • Lozano T , ReyM, RojasEet al. Cytotoxicity effects of metal oxide nanoparticles in human tumor cell lines. J. Phys. Conf. Ser.304(1), 012046 (2011).
  • Buerki-Thurnherr T , XiaoLS, DienerLet al. In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology7(4), 402–416 (2013).
  • Tuomela S , AutioR, Buerki-ThurnherrTet al. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles. PLoS ONE8(7), e70618 (2013).
  • Xia T , KovochichM, LiongMet al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano2(10), 2121–2134 (2008).
  • Samet JM , GravesLM, QuayJet al. Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am. J. Physiol. Lung Cell Mol. Physiol.275(3), L551–L558 (1998).
  • Simón-Vázquez R , Lozano-FernándezT, Peleteiro-OlmedoM, González-FernándezÁ. Conformational changes in human plasma proteins induced by metal oxide nanoparticles. Colloids Surf. B. Biointerfaces113, 198–206 (2014).
  • Vandebriel RJ , De JongWH. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol. Sci. Appl.5, 61–71 (2012).
  • Chiao PJ , MiyamotoS, VermaIM. Autoregulation of I kappa B alpha activity. Proc. Natl Acad. Sci. USA91(1), 28–32 (1994).
  • Brown JJL . Zinc fume fever. Br. J. Radiol.61(724), 327–329 (1988).
  • Schwarz Y , KivityS, FischbeinAet al. Evaluation of workers exposed to dust containing hard metals and aluminum oxide. Am. J. Ind. Med.34(2), 177–182 (1998).
  • Lozano-Fernández T , Ballester-AntxordokiL, Pérez-TempranoNet al. Potential impact of metal oxide nanoparticles on the immune system: the role of integrins, L-selectin and the chemokine receptor CXCR4. Nanomed. Nanotechnol. Biol. Med.10(6), 1301–1310 (2014).