1,560
Views
12
CrossRef citations to date
0
Altmetric
Review

The Melding of Nanomedicine in Thrombosis Imaging and Treatment: a Review

, , , , &
Article: FSO113 | Accepted 12 Feb 2016, Published online: 23 Mar 2016

References

  • Furie B . Mechanisms of thrombus formation. N. Engl. J. Med.359(9), 938–949 (2008).
  • Mackman N . Triggers, targets and treatments for thrombosis. Nature451(7181), 914–918 (2008).
  • Lobatto E , CalcagnoC, MetselaarJet al. Imaging the efficacy of anti-inflammatory liposomes in a rabbit model of atherosclerosis by non-invasive imaging. Methods Enzymol.508, 211–28 (2012).
  • Karagkiozaki V . Nanomedicine highlights in atherosclerosis. J. Nanoparticle Res.15(1529), 1–17 (2013).
  • Anderson HV , WillersonJT. Thrombolysis in acute myocardial infarction. N. Engl. J. Med.329, 703–709 (1993).
  • Jackson S , CalkinAC. The clot thickens-oxidized lipids and thrombosis. Nat. Med.13, 1015–1016 (2007).
  • Psarros C , LeeR, MargaritisM, AntoniadesC. Nanomedicine for the prevention, treatment and imaging of atherosclerosis. Nanomedicine8, S59–S68 (2012).
  • Hilgendorf I , SwirskiFK, RobbinsCS. Monocyte fate in atherosclerosis. Arterioscler. Thromb. Vasc. Biol.35(2), 272–279 (2015).
  • Corti R , FusterV, BadimonJJ. Pathogenetic concepts of acute coronary syndromes. J. Am. Coll. Cardiol.41, S7–S14 (2003).
  • De Caterina R , HustedS, WallentinL, AndreottiF, WeitzI. Position paper of the ESC working group on thrombosis – task force on anticoagulants in heart disease. Thrombosis Haemostasis109(4), 1089–1091 (2013).
  • McMichael M . New models of hemostasis. Top. Companion Anim. Med.27, 40–45 (2012).
  • Monroe M , HoffmanM. What does it take to make the perfect clot?Arterioscler. Thromb. Vasc. Biol.26, 41–48 (2006).
  • Amaral A , OpalSM, VincentJL. Coagulation in sepsis. Intensive Care Med.30(6), 1032–1040 (2004).
  • Viles-Gonzalez J , FusterV, BadimonJ. Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. European Heart J.25, 1197–1207 (2004).
  • Yamashita A , AsadaY, GaxiolaE. Pathology and pathophysiology of atherothrombosis: Virchow’s triad revisited, traditional and novel risk factors in atherothrombosis. InTech (2012). http://cdn.intechopen.com/pdfs-wm/35724.pdf.
  • Munnix IC , CosemansJM, AugerJM, HeemskerkJW. Platelet response heterogeneity in thrombus formation. Thromb. Haemost.102, 1149–1156 (2009).
  • McMichael M . New models of hemostasis. Top. Companion Anim. Med.27, 40–45 (2012).
  • Kotb E . The biotechnological potential of fibrinolytic enzymes in the dissolution of endogenous blood thrombi. Biotechnol. Prog.30(3), 656–672 (2014).
  • Libby P . Atherosclerosis: the new view. Sci. Am.286, 46–55 (2002).
  • Tabas I , WilliamsKJ, BorenJ. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation116, 1832–1844 (2007).
  • Cáceres-Lóriga FM , Pérez-LópezH, Santos-GraciaJ, Morlans-HernandezK. Prosthetic heart valve thrombosis: pathogenesis, diagnosis and management. J. Inter. Cardiol.110(1), 1–6 (2006).
  • Pibarot P , DumesnilJ. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. J. Circ.119(7), 1034–1048 (2009).
  • Barcellona D , MameliG, MarongiuF. Inhibition of blood coagulation activation and oral anticoagulants in patients with mechanical heart valve prostheses. J. Thromb. Res.81(3), 403–406 (1996).
  • Iakovou I , SchmidtT, BonizzoniEet al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA293(17), 2126–2130 (2005).
  • Sastry S , MoriceMC. Are drug-eluting stents safe and effective in the long term?J. Arq. Bras. Cardiol.95(5), 663–670 (2010).
  • O’Riordan M . New standard stent-thrombosis definition yields comparable event rates for DES and bare-metal stents. Transcatheter Cardiovascular Therepeutics1–2 (2006). www.medscape.com/viewarticle/546575.
  • Nakazawa G , FinnAV, JonerMet al. Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients: an autopsy study. J. Circ.118(11), 1138–1145 (2008).
  • Dufrene Y . . Using nanotechniques to explore microbial surfaces. Nat. Rev. Microbiol.6(2), 451–460 (2004).
  • Karagkiozaki V , LogothetidisS, KassavetisS, GiannoglouG. Nanomedicine for the reduction of the thrombogenicity of stent coatings. Inter. J. Nanomed.5, 239–248 (2010).
  • Cacciafesta P , HumphrisA, JandtK, MilesM. Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy. J. Langmuir16(21), 8167–8175 (2000).
  • Mitsakakis K , LousinianS, LogothetidisS. Early stages of human plasma proteins adsorption probed by atomic force m-icroscope. J. Biomol. Engineer.24(1), 119–124 (2007).
  • Logothetidis S . Haemocompatibility of carbon based thin films. J. Diam. Relat. Mater.16, 1847–1857 (2007).
  • Karagkiozaki V , LogothetidisS, LousinianS, GiannoglouG. Impact of surface electric properties of carbon-based thin films on platelets activation for nano-medical and nano-sensing applications. J. Int. Nanomedicine3(4), 461–469 (2008).
  • Guangyong L , NingX, WangD. Probing membrane proteins using atomic force microscopy. J. Cell. Biochem.97, 1191–1197 (2006).
  • Okroj W , Walkowiak-PrzybyloM, Rośniak-BakK, KlimekL, WalkowiakB. Comparison of microscopic methods for evaluating platelet adhesion to biomaterial surfaces. Acta Bioeng. Biomech.11(2), 45–49 (2009).
  • Karagkiozaki V , LogothetidisS, KassavetisS, LousinianS. Nanoscale characterization of biological and mechanical profile of carbon stent nanocoatings. J. Eur. Nanomedicine2(2), 14–21 (2009).
  • Karagkiozaki V , LogothetidisS, GiannoglouG. Advances in stent coating technology via nanotechnology tools and process. Eur. J. Nanomedicine1, 24–28 (2008).
  • Karagkiozaki V , LogothetidisS, KalfagiannisN, LousinianS, GiannoglouG. AFM probing platelets activation behavior on titanium nitride nanocoatings for biomedical applications. J. Nanomedicine5(1), 64–72 (2009).
  • Karagkiozaki V , LogothetidisS, PappaAM. Nanomedicine for atherosclerosis: molecular imaging and treatment. J. Biomed. Nanotechnol.11(2), 191–210 (2015).
  • Karagkiozaki V , LogothetidisS. Horizons in Clinical Nanomedicine Book. Pan Stanford Publishing, Singapore, 46–48 (2014).
  • Logothetidis S . Nanomedicine pillars & monitoring nanobio interactions. In: Nanomedicine and Nanobiotechnology. Springer-Verlag, Berlin, Heidelberg, 27–52 (2012).
  • Yu X , SongSK, ChenJet al. High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. J. Mag. Res. Med.44, 867–872 (2000).
  • Pazzini C , MarcatoPD, PradoLBet al. Polymeric nanoparticles of enoxaparin as a delivery system: in vivo evaluation in normal rats and in a venous thrombosis rat model. J. Nanosci. Nanotech.15(7), 4837–4843 (2015).
  • Mei H , PangZ, HuYet al. Effect of EGF1 peptides in directing nanoparticles to thrombi. Chin. Sci. Bull.55(30), 3424–3429 (2010).
  • Palekar RU , MyersonJW, SchlesingerPH. Thrombin-targeted liposomes establish a sustained localized anticlotting barrier against acute thrombosis. Mol. Pharm.10(11), 4168–4175 (2013).
  • Steinmetz NF . Viral nanoparticles in drug delivery and imaging. Mol. Pharm.10(1), 1–2 (2013).
  • Myerson J , HeL, LanzaG, TollefsenD, WicklineS. Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for treatment and magnetic resonance imaging of acute thrombosis. J. Thromb., Haemost.9(7), 1292–1300 (2011).
  • Bai S , ThomasC, AhsanF. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J. Pharm. Sci.96(8), 2090–2106 (2007).
  • Bi F , ZhangJ, SuY, TangYC, LiuJN. Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials30(28), 5125–5130 (2009).
  • McCarthy JR , SazonovaIY, ErdemSet al. Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy. Nanomedicine7, 1017–1028 (2012).
  • Lin KY , KwongGA, WarrenAD, WoodDK, BhatiaSN. Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano7(10), 9001–9009 (2013).
  • Benyettou F , HardouinJ, LecoveyM, JouniH, MotteL. PEGylated versus non-PEGylated Fe2O3 alendronate nanoparticles. J. Bioanal. Biomed.4, 039–045 (2012).
  • Milla P , DosioF, CattelL. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab.13(1), 105–119 (2012).
  • Shi W , MeiH, DengJet al. The delivery of thrombi-specific nanoparticles incorporating oligonucleotides into injured cerebrovascular endothelium. Biomaterials34(16), 4128–4136 (2013).
  • Sinha A , ShaporevA, NosoudiNet al. Nanoparticle targeting to diseased vasculature for imaging and therapy. Nanomedicine10(5), 1003–1012 (2014).
  • Gruntzig A . Transluminal dilatation of coronary-artery stenosis. Lancet1, 263 (1978).
  • Tang TY , MullerKH, GravesMJet al. Iron oxide particles for atheroma imaging. Arterioscler. Thromb. Vasc. Biol.29, 1001–1008 (2009).
  • Muthu MS , LeongDT, MeiL, FengS-S. Nanotheranostics-application and further development of nanomedicine strategies for advanced theranostics. Theranostics26, 660–677 (2014).
  • Khemtong C , KessingerCW, GaoJ. Polymeric nanomedicine for cancer MR imaging and drug delivery. Chem. Commun. (24), 3497–3510 (2009).
  • Tang J , LobattoME, ReadJCet al. Nanomedical theranostics in cardiovascular disease. Curr. Cardiovasc. Imaging Rep.5, 19–25 (2012).
  • Peters D , KastantinM, KotamrajuVRet al. Targeting atherosclerosis by using modular, multifunctional micelles. Proc. Natl Acad. Sci. USA106(24), 9815–9819 (2009).
  • Wickline SA , NeubauerAM, WinterPM, CaruthersSD, LanzaGM. Review article: molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging25, 667–680 (2007).
  • Stern ST , McNeilSE. Nanotechnology safety concerns revisited. Toxicol. Sci.101, 4–21 (2008).
  • Donaldson K , PolandCA. Nanotoxicity: challenging the myth of nano-specific toxicity. Curr. Opin. Biotechnol.24(4), 724–734 (2013).
  • Radomski A , JuraszP, Alonso-EscolanoDet al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol.146(6), 882–893 (2005).
  • Buzea C , PanchecoI, RobbieK. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases.2(4), MR17–MR71 (2007).
  • Al-Hanbali O , RuttKJ, SarkerDK, HunterAC, MoghimiSM. Concentration dependent structural ordering of poloxamine 908 on polystyrene nanoparticles and their modulatory role on complement consumption. J. Nanosci. Nanotechnol.6, 3126–33 (2006).
  • Bertholon I , VauthierC, LabarreD. Complement activation by core-shell poly (isobutylcyanoacrylate)-polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide. Pharm. Res.23, 1313–1323 (2006).
  • Vonarbourg A , PassiraniC, SaulnierP, SimardP, LerouxJC, BenoitJP. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J. Biomed. Mater. Res. A.78, 620–628 (2006).