936
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Developmental Origin of Postnatal Cardiomyogenic Progenitor Cells

, , , , , & show all
Article: FSO112 | Accepted 08 Mar 2016, Published online: 29 Mar 2016

References

  • Poss KD , WilsonLG, KeatingMT. Heart regeneration in zebrafish. Science298(5601), 2188–2190 (2002).
  • Wang J , PanakovaD, KikuchiKet al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development138(16), 3421–3430 (2011).
  • Bergmann O , BhardwajRD, BernardSet al. Evidence for cardiomyocyte renewal in humans. Science324(5923), 98–102 (2009).
  • Hsieh PC , SegersVF, DavisMEet al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med.13(8), 970–974 (2007).
  • Kajstura J , GurusamyN, OgorekBet al. Myocyte turnover in the aging human heart. Circ. Res.107(11), 1374–1386 (2010).
  • Quaini F , UrbanekK, BeltramiAPet al. Chimerism of the transplanted heart. N. Engl. J. Med.346(1), 5–15 (2002).
  • Senyo SE , SteinhauserML, PizzimentiCLet al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature493(7432), 433–436 (2013).
  • Bergmann O , ZdunekS, FelkerAet al. Dynamics of cell generation and turnover in the human heart. Cell161(7), 1566–1575 (2015).
  • Beltrami AP , BarlucchiL, TorellaDet al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell114(6), 763–776 (2003).
  • Oh H , BradfuteSB, GallardoTDet al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA100(21), 12313–12318 (2003).
  • Martin CM , MeesonAP, RobertsonSMet al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol.265(1), 262–275 (2004).
  • Smart N , BolliniS, DubeKNet al. De novo cardiomyocytes from within the activated adult heart after injury. Nature474(7353), 640–644 (2011).
  • Chong JJ , ChandrakanthanV, XaymardanMet al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell9(6), 527–540 (2011).
  • Messina E , De AngelisL, FratiGet al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res.95(9), 911–921 (2004).
  • Smith RR , BarileL, ChoHCet al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation115(7), 896–908 (2007).
  • Lyons I , ParsonsLM, HartleyLet al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2–5. Genes. DEV.9(13), 1654–1666 (1995).
  • Tanaka M , ChenZ, BartunkovaS, YamasakiN, IzumoS. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development126(6), 1269–1280 (1999).
  • Wu SM , FujiwaraY, CibulskySMet al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell127(6), 1137–1150 (2006).
  • Briggs LE , TakedaM, CuadraAEet al. Perinatal loss of Nkx2–5 results in rapid conduction and contraction defects. Circ. Res.103(6), 580–590 (2008).
  • Chen WP , LiuYH, HoYJ, WuSM. Pharmacological inhibition of TGFbeta receptor improves Nkx2.5 cardiomyoblast-mediated regeneration. Cardiovasc. Res.105(1), 44–54 (2015).
  • Merki E , ZamoraM, RayaAet al. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc. Natl Acad. Sci. USA102(51), 18455–18460 (2005).
  • Sohal DS , NghiemM, CrackowerMAet al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ. Res.89(1), 20–25 (2001).
  • Kisanuki YY , HammerRE, MiyazakiJ, WilliamsSC, RichardsonJA, YanagisawaM. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol.230(2), 230–242 (2001).
  • Lang D , LuMM, HuangLet al. Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature433(7028), 884–887 (2005).
  • Zhou B , MaQ, RajagopalSet al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature454(7200), 109–113 (2008).
  • Soriano P . Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet.21(1), 70–71 (1999).
  • Lepilina A , CoonAN, KikuchiKet al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell127(3), 607–619 (2006).
  • Kikuchi K , HoldwayJE, WerdichAAet al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature464(7288), 601–605 (2010).
  • Lien CL , WuC, MercerB, WebbR, RichardsonJA, OlsonEN. Control of early cardiac-specific transcription of Nkx2–5 by a GATA-dependent enhancer. Development126(1), 75–84 (1999).
  • Morrisey EE . Rewind to recover: dedifferentiation after cardiac injury. Cell Stem Cell9(5), 387–388 (2011).
  • Driesen RB , VerheyenFK, DebieWet al. Re-expression of alpha skeletal actin as a marker for dedifferentiation in cardiac pathologies. J. Cell. Mol. Med.13(5), 896–908 (2009).
  • Dispersyn GD , MesottenL, MeurisBet al. Dissociation of cardiomyocyte apoptosis and dedifferentiation in infarct border zones. Eur. Heart. J.23(11), 849–857 (2002).
  • Cai CL , MartinJC, SunYet al. A myocardial lineage derives from Tbx18 epicardial cells. Nature454(7200), 104–108 (2008).
  • Rudat C , KispertA. Wt1 and epicardial fate mapping. Circ. Res.111(2), 165–169 (2012).