1,697
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Comparison of Commercial Nanoliquid Chromatography Columns for Fast, Targeted Mass Spectrometry-Based Proteomics

, , , &
Article: FSO119 | Accepted 26 Feb 2016, Published online: 16 Mar 2016

References

  • Picotti P , AebersoldR. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat. Methods9(6), 555–566 (2012).
  • Liebler DC , ZimmermanLJ. Targeted quantitation of proteins by mass spectrometry. Biochemistry52(22), 3797–3806 (2013).
  • Chen Y , GruidlM, Remily-WoodEet al. Quantification of beta-catenin signaling components in colon cancer cell lines, tissue sections, and microdissected tumor cells using reaction monitoring mass spectrometry. J. Proteome Res.9(8), 4215–4227 (2010).
  • Gallien S , DuriezE, CroneC, KellmannM, MoehringT, DomonB. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol. Cell. Proteomics11(12), 1709–1723 (2012).
  • Neue UD . Theory of peak capacity in gradient elution. J. Chromatogr. A1079(1), 153–161 (2005).
  • Wang X , StollDR, SchellingerAP, CarrPW. Peak capacity optimization of peptide separations in reversed-phase gradient elution chromatography: fixed column format. Anal. Chem.78(10), 3406–3416 (2006).
  • Marchetti N , CavazziniA, GrittiF, GuiochonG. Gradient elution separation and peak capacity of columns packed with porous shell particles. J. Chromatogr. A1163(1), 203–211 (2007).
  • Unger KK , SkudasR, SchulteMM. Particle packed columns and monolithic columns in high-performance liquid chromatography-comparison and critical appraisal. J. Chromatogr. A1184(1), 393–415 (2008).
  • Eeltink S , DolmanS, DetobelF, SwartR, UrsemM, SchoenmakersPJ. High-efficiency liquid chromatography-mass spectrometry separations with 50 mm, 250 mm, and 1 m long polymer-based monolithic capillary columns for the characterization of complex proteolytic digests. J. Chromatogr. A1217(43), 6610–6615 (2010).
  • Novakova L , VaastA, StassenCet al. High-resolution peptide separations using nano-lc at ultra-high pressure. J. Sep. Sci.36(7), 1192–1199 (2013).
  • Zhou F , LuY, FicarroSB, WebberJT, MartoJA. Nanoflow low pressure high peak capacity single dimension lc-ms/ms platform for high-throughput, in-depth analysis of mammalian proteomes. Anal. Chem.84(11), 5133–5139 (2012).
  • Rogeberg M , WilsonSR, MalerodH, LundanesE, TanakaN, GreibrokkT. High efficiency, high temperature separations on silica based monolithic columns. J. Chromatogr. A1218(41), 7281–7288 (2011).
  • Vaast A , BroeckhovenK, DolmanS, DesmetG, EeltinkS. Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3 µm porous and 2.7 µm fused-core silica particles. J. Chromatogr. A1228, 270–275 (2012).
  • Macdonald BT , TamaiK, HeX. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell17(1), 9–26 (2009).
  • Olsen PA , SolbergNT, LundKet al. Implications of targeted genomic disruption of β-catenin in bxpc‐3 pancreatic adenocarcinoma cells. PLoS ONE9(12), e115496 (2014).
  • Lau T , ChanE, CallowMet al. A novel tankyrase small-molecule inhibitor suppresses apc mutation-driven colorectal tumor growth. Cancer Res.73(10), 3132–3144 (2013).
  • Voronkov A , HolsworthDD, WaalerJet al. Structural basis and sar for g007-lk, a lead stage 1,2,4-triazole based specific tankyrase 1/2 inhibitor. J. Med. Chem.56(7), 3012–3023 (2013).
  • Wisniewski JR , ZougmanA, NagarajN, MannM. Universal sample preparation method for proteome analysis. Nat. Methods6(5), 359–362 (2009).
  • Ong SE , MannM. A practical recipe for stable isotope labeling by amino acids in cell culture (silac). Nat. Protoc.1(6), 2650–2660 (2006).
  • Maclean B , TomazelaDM, ShulmanNet al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics26(7), 966–968 (2010).
  • Consortium TU . Activities at the universal protein resource (uniprot). Nucleic Acids Res.42(D1), D191–D198 (2014).
  • Kele M , GuiochonG. Repeatability and reproducibility of retention data and band profiles on reversed-phase liquid chromatography columns: IV. Results obtained with luna c18 (2) columns. J. Chromatogr. A869(1), 181–209 (2000).
  • Kele M , GuiochonG. Repeatability and reproducibility of retention data and band profiles on six batches of monolithic columns. J. Chromatogr. A960(1), 19–49 (2002).
  • Peterson AC , RussellJD, BaileyDJ, WestphallMS, CoonJJ. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteomics11(11), 1475–1488 (2012).
  • Sun L , ZhuG, DovichiNJ. Comparison of the ltq-orbitrap velos and the q-exactive for proteomic analysis of 1–1000 ng raw 264.7 cell lysate digests. Rapid Commun. Mass Spectrom.27(1), 157–162 (2013).
  • Ikediobi ON , DaviesH, BignellGet al. Mutation analysis of 24 known cancer genes in the nci‐60 cell line set. Mol. Cancer Ther.5(11), 2606–2612 (2006).
  • Gerber SA , RushJ, StemmanO, KirschnerMW, GygiSP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem ms. Proc. Natl Acad. Sci. USA100(12), 6940–6945 (2003).
  • Edfors F , BostromT, ForsstromBet al. Immunoproteomics using polyclonal antibodies and stable isotope-labeled affinity-purified recombinant proteins. Mol. Cell. Proteomics13(6), 1611–1624 (2014).
  • Beneito-Cambra M , Herrero-MartínezJM, Ramis-RamosG, LindnerW, LämmerhoferM. Comparison of monolithic and microparticulate columns for reversed-phase liquid chromatography of tryptic digests of industrial enzymes in cleaning products. J. Chromatogr. A1218(41), 7275–7280 (2011).
  • Gritti F , GuiochonG. Repeatability of the efficiency of columns packed with sub‐3µm core-shell particles: part II. 2.7 µm halo-es-peptide-c18 particles in 4.6 mm and 2.1 mm × 100 mm column formats. J. Chromatogr. A1252, 31–44 (2012).
  • Ishizuka N , KobayashiH, MinakuchiHet al. Monolithic silica columns for high-efficiency separations by high-performance liquid chromatography. J. Chromatogr. A960(1), 85–96 (2002).
  • Schmidt A , KarasM, DülcksT. Effect of different solution flow rates on analyte ion signals in nano-esi ms, or: when does esi turn into nano-esi?J. Am. Soc. Mass Spectrom.14(5), 492–500 (2003).