8,587
Views
91
CrossRef citations to date
0
Altmetric
Review

Stem Cell Culture and Differentiation in Microfluidic Devices Toward Organ-on-a-Chip

, , , &
Article: FSO187 | Received 10 Dec 2016, Accepted 21 Feb 2017, Published online: 08 May 2017

References

  • Matsumura T, Tatsumi K, Noda Y et al. Single-cell cloning and expansion of human induced pluripotent stem cells by a microfluidic culture device. Biochem. Biophys. Res. Commun. 453(1), 131–137 (2014).
  • Chuah YJ, Koh YT, Lim K, Menon NV, Wu Y, Kang Y. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci. Rep. 5, 18162 (2015).
  • Jang JM, Tran SH, Na SC, Jeon NL. Engineering controllable architecture in matrigel for 3D cell alignment. ACS Appl. Mater. Interfaces 7(4), 2183–2188 (2015).
  • Titmarsh DM, Glass NR, Mills RJ et al. Induction of Human iPSC-derived cardiomyocyte proliferation revealed by combinatorial screening in high density microbioreactor arrays. Sci. Rep. 6, 24637 (2016).
  • Alessandri K, Feyeux M, Gurchenkov B et al. A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (hNSC). Lab Chip 16(9), 1593–1604 (2016).
  • Pavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD. Controlled electromechanical cell stimulation on-a-chip. Sci. Rep. 5, 11800 (2015).
  • Moreno EL, Hachi S, Hemmer K et al. Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture. Lab Chip 15(11), 2419–2428 (2015).
  • Jeon JS, Bersini S, Whisler JA et al. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr. Biol. (Camb.) 6(5), 555–563 (2014).
  • Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4), 598–611 (2008).
  • Becker AJ, McCulloch E, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197, 452–454 (1963).
  • Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132(4), 661–680 (2008).
  • Hsu YC, Fuchs E. A family business: stem cell progeny join the niche to regulate homeostasis. Nat. Rev. Mol. Cell Biol. 13(2), 103–114 (2012).
  • King NM, Perrin J. Ethical issues in stem cell research and therapy. Stem Cell Res. Ther. 5(4), 85 (2014).
  • Caulfield T, Kamenova K, Ogbogu U et al. Research ethics and stem cells: is it time to re-think current approaches to oversight? EMBO Rep. 16(1), 2–6 (2015).
  • Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G. Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol. 32(5), 245–253 (2014).
  • Park D, Lim J, Park JY, Lee SH. Concise review: stem cell microenvironment on a chip: current technologies for tissue engineering and stem cell biology. Stem Cells Transl. Med. 4(11), 1352–1368 (2015).
  • Li XJ, Zhou Y. Microfluidic Devices for Biomedical Applications. Woodhead Publishing, Cambridge, UK (2013).
  • Sanjay ST, Fu G, Dou M et al. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 140(21), 7062–7081 (2015).
  • Wu J, He Z, Chen Q, Lin JM. Biochemical analysis on microfluidic chips. TrAC Trends Anal. Chem. 80, 213–231 (2016).
  • Dou M, Sanjay ST, Benhabib M, Xu F, Li X. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms. Talanta 145, 43–54 (2015).
  • Dou M, Garcia JM, Zhan S, Li X. Interfacial nano-biosensing in microfluidic droplets for high-sensitivity detection of low-solubility molecules. Chem. Commun. (Camb.) 52(17), 3470–3473 (2016).
  • Dou M, Sanjay ST, Dominguez DC, Liu P, Xu F, Li X. Multiplexed instrument-free meningitis diagnosis on a polymer/paper hybrid microfluidic biochip. Biosens. Bioelectron. 87, 865–873 (2017).
  • Li XJ, Valadez AV, Zuo P, Nie Z. Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4(12), 1509–1525 (2012).
  • Van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. Microfluidic 3D cell culture: from tools to tissue models. Curr. Opin. Biotechnol. 35, 118–126 (2015).
  • Duncombe TA, Tentori AM, Herr AE. Microfluidics: reframing biological enquiry. Nat. Rev. Mol. Cell Biol. 16(9), 554–567 (2015).
  • Allazetta S, Lutolf MP. Stem cell niche engineering through droplet microfluidics. Curr. Opin. Biotechnol. 35, 86–93 (2015).
  • Sanjay ST, Dou M, Sun J, Li X. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers. Sci. Rep. 6, 30474 (2016).
  • Dou M, Dominguez DC, Li X, Sanchez J, Scott G. A versatile PDMS/paper hybrid microfluidic platform for sensitive infectious disease diagnosis. Anal. Chem. 86(15), 7978–7986 (2014).
  • Phillips JA, Xu Y, Xia Z, Fan ZH, Tan WH. Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal. Chem. 81(3), 1033–1039 (2009).
  • Li XJ, Ling V, Li PCH. Same-single-cell analysis for the study of drug efflux modulation of multidrug resistant cells using a microfluidic chip. Anal. Chem. 80(11), 4095–4102 (2008).
  • Zuo P, Li X, Dominguez DC, Ye BC. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab Chip 13(19), 3921–3928 (2013).
  • Qian T, Shusta EV, Palecek SP. Advances in microfluidic platforms for analyzing and regulating human pluripotent stem cells. Curr. Opin. Genet. Dev. 34, 54–60 (2015).
  • Wu HW, Lin CC, Lee GB. Stem cells in microfluidics. Biomicrofluidics 5(1), 13401 (2011).
  • Titmarsh DM, Chen H, Glass NR, Cooper-White JJ. Concise review: microfluidic technology platforms: poised to accelerate development and translation of stem cell-derived therapies. Stem Cells Transl. Med. 3(1), 81–90 (2014).
  • Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat. Biotechnol. 32(8), 760–772 (2014).
  • Zhang Q, Austin RH. Applications of microfluidics in stem cell biology. BioNanoScience 2(4), 277–286 (2012).
  • Yoshimitsu R, Hattori K, Sugiura S et al. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions. Biotechnol. Bioeng. 111(5), 937–947 (2014).
  • Yang K, Han S, Shin Y et al. A microfluidic array for quantitative analysis of human neural stem cell self-renewal and differentiation in three-dimensional hypoxic microenvironment. Biomaterials 34(28), 6607–6614 (2013).
  • Chen Q, Wu J, Zhuang Q, Lin X, Zhang J, Lin JM. Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system. Sci. Rep. 3, 2433 (2013).
  • Bissoyi A, Bit A, Singh BK, Singh AK, Patra PK. Enhanced cryopreservation of MSCs in microfluidic bioreactor by regulated shear flow. Sci. Rep. 6, 35416 (2016).
  • Menon NV, Chuah YJ, Phey S et al. Microfluidic assay to study the combinatorial impact of substrate properties on mesenchymal stem cell migration. ACS Appl. Mater. Interfaces 7(31), 17095–17103 (2015).
  • Mahadik BP, Pedron Haba S, Skertich LJ, Harley BA. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials 67, 297–307 (2015).
  • Chuah YJ, Kuddannaya S, Lee MH, Zhang Y, Kang Y. The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate. Biomater. Sci. 3(2), 383–390 (2015).
  • Song W, Wang X, Lu H, Kawazoe N, Chen G. Exploring adipogenic differentiation of a single stem cell on poly(acrylic acid) and polystyrene micropatterns. Soft Matter 8(32), 8429 (2012).
  • Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14(7), 737–744 (2015).
  • Pati F, Jang J, Ha DH et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 3935 (2014).
  • Lück S, Schubel R, Rub J et al. Tailored and biodegradable poly(2-oxazoline) microbeads as 3D matrices for stem cell culture in regenerative therapies. Biomaterials 79, 1–14 (2016).
  • Agarwal P, Zhao S, Bielecki P et al. One-step microfluidic generation of pre-hatching embryo-like core–shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 13(23), 4525–4533 (2013).
  • Occhetta P, Centola M, Tonnarelli B, Redaelli A, Martin I, Rasponi M. High-throughput microfluidic platform for 3D cultures of mesenchymal stem cells, towards engineering developmental processes. Sci. Rep. 5, 10288 (2015).
  • Wuchter P, Saffrich R, Giselbrecht S et al. Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells. Cell Tissue Res. 364(3), 573–584 (2016).
  • Cambier T, Honegger T, Vanneaux V et al. Design of a 2D no-flow chamber to monitor hematopoietic stem cells. Lab Chip 15(1), 77–85 (2015).
  • Yamada R, Hattori K, Tachikawa S et al. Control of adhesion of human induced pluripotent stem cells to plasma-patterned polydimethylsiloxane coated with vitronectin and gamma-globulin. J. Biosci. Bioeng. 118(3), 315–322 (2014).
  • Berthier E, Young EW, Beebe D. Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 12(7), 1224–1237 (2012).
  • Mattioli S, Martino S, D’angelo F, Emiliani C, Kenny JM, Armentano I. Nanostructured polystyrene films engineered by plasma processes: surface characterization and stem cell interaction. J. Appl. Polym. Sci. 131(14), 40427 (2014).
  • Caiazzo M, Okawa Y, Ranga A, Piersigilli A, Tabata Y, Lutolf MP. Defined three-dimensional microenvironments boost induction of pluripotency. Nat. Mater. 15(3), 344–352 (2016).
  • Zhang X, Liu M, Li Y et al. Engineering cell microenvironment using novel functional hydrogels. Eur. Polym. J. 72, 590–601 (2015).
  • Li J, Lam AT, Toh JP, Reuveny S, Oh SK, Birch WR. Fabrication of uniform-sized poly-varepsilon-caprolactone microspheres and their applications in human embryonic stem cell culture. Biomed. Microdevices 17(6), 105 (2015).
  • Super A, Jaccard N, Cardoso Marques MP et al. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device. Biotechnol. J. 11(9), 1179–1189 (2016).
  • Li XJ, Valadez AV, Zuo P, Nie Z. Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4(12), 1509–1525 (2012).
  • Qi H, Huang G, Han YL et al. In vitro spatially organizing the differentiation in individual multicellular stem cell aggregates. Crit. Rev. Biotechnol. 36(1), 20–31 (2016).
  • Hesari Z, Soleimani M, Atyabi F et al. A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells. J. Biomed. Mater. Res. A 104(6), 1534–1543 (2016).
  • Wang B, Jedlicka S, Cheng X. Maintenance and neuronal cell differentiation of neural stem cells C17.2 correlated to medium availability sets design criteria in microfluidic systems. PLoS ONE 9(10), e109815 (2014).
  • Siltanen C, Yaghoobi M, Haque A et al. Microfluidic fabrication of bioactive microgels for rapid formation and enhanced differentiation of stem cell spheroids. Acta Biomater. 34, 125–132 (2016).
  • Uzel SG, Amadi OC, Pearl TM, Lee RT, So PT, Kamm RD. Simultaneous or sequential orthogonal gradient formation in a 3D cell culture microfluidic platform. Small 12(5), 612–622 (2016).
  • Yang K, Park HJ, Han S et al. Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system. Biomaterials 63, 177–188 (2015).
  • Kim KM, Choi YJ, Hwang JH et al. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS ONE 9(3), e92427 (2014).
  • Shi X, Li L, Ostrovidov S, Shu Y, Khademhosseini A, Wu H. Stretchable and micropatterned membrane for osteogenic differentation of stem cells. ACS Appl. Mater. Interfaces 6(15), 11915–11923 (2014).
  • Cheng YC, Tsao CW, Chiang MZ et al. Microfluidic platform for human placenta-derived multipotent stem cells culture and applied for enhanced neuronal differentiation. Microfluid. Nanofluid. 18(4), 587–598 (2014).
  • Wang G, Mccain ML, Yang L et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20(6), 616–623 (2014).
  • Tumarkin E, Tzadu L, Csaszar E et al. High-throughput combinatorial cell co-culture using microfluidics. Integr. Biol. (Camb.) 3(6), 653–662 (2011).
  • Torisawa YS, Spina CS, Mammoto T et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat. Methods 11(6), 663–669 (2014).
  • Goldman SM, Barabino GA. Spatial engineering of osteochondral tissue constructs through microfluidically directed differentiation of mesenchymal stem cells. Biores. Open Access 5(1), 109–117 (2016).
  • Jastrzebska E, Tomecka E, Jesion I. Heart-on-a-chip based on stem cell biology. Biosens. Bioelectron. 75, 67–81 (2016).
  • Karimi M, Bahrami S, Mirshekari H et al. Microfluidic systems for stem cell-based neural tissue engineering. Lab Chip 16(14), 2551–2571 (2016).
  • Mosig AS. Organ-on-chip models: new opportunities for biomedical research. Future Sci. OA doi:10.4155/fsoa-2016-0038 (2016) ( Epub ahead of print).