1,660
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Fully Electronic Urine Dipstick Probe for Combinatorial Detection of Inflammatory Biomarkers

, , , &
Article: FSO301 | Received 17 Nov 2017, Accepted 20 Feb 2018, Published online: 27 Mar 2018

References

  • Prasad S, Tyagi AK, Aggarwal BB. Detection of inflammatory biomarkers in saliva and urine: potential in diagnosis, prevention and treatment for chronic diseases. Exp. Biol. Med. 241(8), 783–799 (2016).
  • Kamakoti V. Evaluation of molybdenum as an electrode material for affinity-based urine dipstick biosensing (2017). http://libtreasures.utdallas.edu/xmlui/handle/10735.1/5482.
  • Chen Z, Martin MT, Xinyu L. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers. Sci. Technol. Adv. Mater. 14(5), 054402 (2013).
  • Link N, Weber W, Fussenegger M. A novel generic dipstick-based technology for rapid and precise detection of tetracycline, streptogramin and macrolide antibiotics in food samples. J. Biotechnol. 128(3), 668–680 (2007).
  • Selvakumar LS, Thakur MS. Dipstick-based immunochemiluminescence biosensor for the analysis of vitamin B12 in energy drinks: a novel approach. Anal. Chim. Acta 722, 107–113 (2012).
  • Vlachou MA, Glynou KM, Ioannou PC, Christopoulos TK, Vartholomatos G. Development of a three-biosensor panel for the visual detection of thrombophilia-associated mutations. Biosens. Bioelectron. 26(1), 228–234 (2010).
  • Peter J, Green C, Hoelscher M, Mwaba P, Zumla A, Dheda K. Urine for the diagnosis of tuberculosis: current approaches, clinical applicability and new developments. Curr. Opin. Pulm. Med. 16(3), 262 (2010).
  • Gourinat A-C, O'connor O, Calvez E, Goarant C, Dupont-Rouzeyrol M. Detection of Zika virus in urine. Emerging Infect. Dis. 21(1), 84 (2015).
  • Diouf A, Motia S, Hassani NEaE, Bari NE, Bouchikhi B. An electrochemical biosensor-based on moleculary imprinted polymer for the quantification of creatinine in human urine samples. Presented at: 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). Montreal, Canada, 28–31 May 2017.
  • He Y, Zhang X, Yu H. Gold nanoparticles-based colorimetric and visual creatinine assay. Microchimica Acta 182(11), 2037–2043 (2015).
  • Su L, Feng J, Zhou X, Ren C, Li H, Chen X. Colorimetric detection of urine glucose-based ZnFe2O4 magnetic nanoparticles. Anal. Chem. 84(13), 5753–5758 (2012).
  • Zangheri M, Di Nardo F, Mirasoli M et al. Chemiluminescence lateral flow immunoassay cartridge with integrated amorphous silicon photosensors array for human serum albumin detection in urine samples. Anal. Bioanal. Chem. 408(30), 8869–8879 (2016).
  • González-Guerrero AB, Maldonado J, Dante S, Grajales D, Lechuga LM. Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor. J. Biophotonics 10(1), 61–67 (2017).
  • Chen C-H, Lin MS. A novel structural specific creatinine sensing scheme for the determination of the urine creatinine. Biosens. Bioelectron. 31(1), 90–94 (2012).
  • Mach KE, Mohan R, Patel S, Wong PK, Hsieh M, Liao JC. Development of a biosensor-based rapid urine test for detection of urogenital schistosomiasis. PLoS Negl. Trop. Dis. 9(7), e0003845 (2015).
  • Mukundan H, Kumar S, Price DN et al. Rapid detection of mycobacterium tuberculosis biomarkers in a sandwich immunoassay format using a waveguide-based optical biosensor. Tuberculosis 92(5), 407–416 (2012).
  • Cho S, Park TS, Nahapetian TG, Yoon J-Y. Smartphone-based, sensitive μPAD detection of urinary tract infection and gonorrhea. Biosens. Bioelectron. 74, 601–611 (2015).
  • Li N, Wang Y, Li Y et al. A label-free electrochemical immunosensor based on Au@Pd/Ag yolk-bimetallic shell nanoparticles and amination graphene for detection of nuclear matrix protein 22. Sens Actuators B Chem. 202, 67–73 (2014).
  • Xuan Viet N, Chikae M, Ukita Y et al. Gold-linked electrochemical immunoassay on single-walled carbon nanotube for highly sensitive detection of human chorionic gonadotropinhormone. Biosens. Bioelectron. 42, 592–597 (2013).
  • Sánchez-Tirado E, Martínez-García G, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Electrochemical immunosensor for sensitive determination of transforming growth factor (TGF)-β1 in urine. Biosens. Bioelectron. 88, 9–14 (2017).
  • Pan Y, Sonn GA, Sin MLY et al. Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis. Biosens. Bioelectron. 26(2), 649–654 (2010).
  • Park Y-J, Yoo S-A, Kim G-R, Cho C-S, Kim W-U. Urinary interleukin-6 as a predictor of radiographic progression in rheumatoid arthritis: a 3-year evaluation. Sci. Rep. 6, 35242 (2016).
  • Krzemień G, Roszkowska-Blaim M, Kostro I et al. Urinary levels of interleukin-6 and interleukin-8 in children with urinary tract infections to age 2. Med. Sci. Monit. 10(11), CR593–CR597 (2004).
  • Gürgöze MK, Akarsu S, Yilmaz E et al. Proinflammatory cytokines and procalcitonin in children with acute pyelonephritis. Pediatr. Nephrol. 20(10), 1445–1448 (2005).
  • Galanakis E, Bitsori M, Dimitriou H, Giannakopoulou C, Karkavitsas NS, Kalmanti M. Serum and urine interleukin-6 and transforming growth factor-beta1 in young infants with pyelonephritis. Int. Urol. Nephrol. 39(2), 581–585 (2007).
  • Freedman AL. Urologic diseases in North America project: trends in resource utilization for urinary tract infections in children. J. Urol. 173(3), 949–954 (2005).
  • Griebling TL. Urologic diseases in America project: trends in resource use for urinary tract infections in women. J. Urol. 173(4), 1281–1287 (2005).
  • Krzemień G, Szmigielska A, Turczyn A, Pańczyk-Tomaszewska M. Urine interleukin-6, interleukin-8 and transforming growth factor β1 in infants with urinary tract infection and asymptomatic bacteriuria. Cent. Eur. J. Immunol. 41(3), 260 (2016).
  • Uehling DT, Johnson DB, Hopkins WJ. The urinary tract response to entry of pathogens. World J. Urol. 17(6), 351–358 (1999).
  • Sundvall P-D, Elm M, Ulleryd P et al. Interleukin-6 concentrations in the urine and dipstick analyses were related to bacteriuria but not symptoms in the elderly: a cross-sectional study of 421 nursing home residents. BMC Geriatr. 14(1), 88 (2014).
  • Sundén F, Wullt B. Predictive value of urinary interleukin-6 for symptomatic urinary tract infections in a nursing home population. Int. J. Urol. 23(2), 168–174 (2016).
  • Tejani NR, Chonmaitree T, Rassin DK, Howie VM, Owen MJ, Goldman AS. Use of C-reactive protein in differentiation between acute bacterial and viral otitis media. Pediatrics 95(5), 664–669 (1995).
  • Chuang Y-C, Tyagi V, Liu R-T, Chancellor MB, Tyagi P. Urine and serum C-reactive protein levels as potential biomarkers of lower urinary tract symptoms. Urol. Sci. 21(3), 132–136 (2010).
  • Meyer MH, Hartmann M, Krause H-J et al. CRP determination based on a novel magnetic biosensor. Biosens. Bioelectron. 22(6), 973–979 (2007).
  • Yildiz B, Poyraz H, Cetin N, Kural N, Colak O. High sensitive C-reactive protein: a new marker for urinary tract infection, VUR and renal scar. Eur. Rev. Med. Pharmacol. Sci. 17, 2598–2604 (2013).
  • Nanda N, Juthani-Mehta M. Novel biomarkers for the diagnosis of urinary tract infection: a systematic review. Biomark. Insights 4, 111–121 (2009).
  • Kamakoti V, Panneer Selvam A, Radha Shanmugam N, Muthukumar S, Prasad S. Flexible molybdenum electrodes toward designing affinity-based protein biosensors. Biosensors 6(3), 36 (2016).
  • Munje RD, Muthukumar S, Selvam AP, Prasad S. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics. Sci. Rep. 5, 14586 (2015).
  • Panneer Selvam A, Prasad S, Barrett TW, Kazmierczak SC. Electrical nanowell diagnostics sensors for rapid and ultrasensitive detection of prostate-specific antigen. Nanomedicine 10(16), 2527–2536 (2015).
  • Radha Shanmugam N, Muthukumar S, Chaudhry S, Anguiano J, Prasad S. Ultrasensitive nanostructure sensor arrays on flexible substrates for multiplexed and simultaneous electrochemical detection of a panel of cardiac biomarkers. Biosens. Bioelectron. 89, 764–772 (2017).
  • Munje RD, Muthukumar S, Jagannath B, Prasad S. A new paradigm in sweat-based wearable diagnostics biosensors using room temperature ionic liquids (RTILs). Sci. Rep. 7, 1950 (2017).
  • Xu K, Wang C, Liu H, Qian Y. Simultaneous removal of phosphorus and potassium from synthetic urine through the precipitation of magnesium potassium phosphate hexahydrate. Chemosphere 84(2), 207–212 (2011).
  • Lin K-C, Jagannath B, Muthukumar S, Prasad S. Subpicomolar label-free detection of thrombin using electrochemical impedance spectroscopy of aptamer-functionalized MoS2. Analyst 142(15), 2770–2780 (2017).
  • Daniels JS, Pourmand N. Label-free impedance biosensors: Opportunities and challenges. Electroanalysis 19(12), 1239–1257 (2007).
  • Munje RD, Muthukumar S, Prasad S. Lancet-free and label-free diagnostics of glucose in sweat using zinc oxide-based flexible bioelectronics. Sens Actuators B Chem. 238, 482–490 (2017).