6,555
Views
44
CrossRef citations to date
0
Altmetric
Review

Latest Development on RNA-Based Drugs and Vaccines

Article: FSO300 | Received 15 Dec 2017, Accepted 19 Feb 2018, Published online: 04 May 2018

References

  • Drews J. Drug discovery: a historical perspective. Science 291, 1960–1964 (2000).
  • Dimitrov DS. Therapeutic proteins. Methods Mol. Biol. 899, 1–26 (2012).
  • Chen J, Xie J. Progress on RNAi-based molecular medicines. Int. J. Nanomed. 7, 3971–3980 (2012).
  • Brawerman G. Eukaryotic messenger RNA. Annu. Rev. Biochem. 43, 621–642 (1974).
  • Burgess DJ. RNA stability: remember your driver. Nat. Rev. Genet. 13, 72 (2012).
  • Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J. Drug Deliv. 2013, 705265 (2013).
  • Cohn L, Delamarre L. Dendritic cell-targeted vaccines. Front. Immunol. 5, 255 (2014).
  • Lundstrom K. Self-replicating RNA viral vectors in vaccine development and gene therapy. Fut. Virol. 11, 345–356 (2016).
  • Shatkun AJ. Capping of eukaryotic mRNAs. Cell 9, 645–653 (1976).
  • McNamara MA, Nair SK, Holl EK. RNA-based vaccines in cancer immunotherapy. J. Immunol. Res. 2015, 794528 (2015).
  • Pasquinelli AE, Dahlberg JE, Lund E. Reverse 5′ caps in RNAs made in vitro by phage RNA polymerases. RNA 1, 957–967 (1995).
  • Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE. Synthesis and properties of mRNAs containing the novel ‘anti-reverse’ cap analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl(33′-deoxy)GpppG. RNA 7, 1486–1495 (2001).
  • Zohra FT, Chowdhury EH, Tada S, Hoshiba T, Akaike T. Effective delivery with enhanced translational activity synergistically accelerates mRNA-based transfection. Biochem. Biophys. Res. Comm. 358, 373–378 (2007).
  • Jaschke A, Hofer K, Nubel G, Frindert J. Cap-like structures in bacterial RNA and epitranscriptomic modification. Curr. Opin. Microbiol. 30, 44–49 (2016).
  • Cahova H, Winz ML, Hofer K, Nubel G, Jaschke A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 519, 374–377 (2015).
  • Bird JG, Zhang Y, Tian Y et al. The mechanism of RNA 5′ capping with NAD+, NADH and dephospho-CoA. Nature 535, 444–447 (2016).
  • Bernstein P, Peltz SW, Ross J. The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol. Cell. Biol. 9, 659–670 (1989).
  • Gingras A-C, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Ann. Rev. Biochem. 68, 913–963 (1999).
  • Holtkamp S, Kreiter S, Selmi A et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T cell stimulatory capacity of dendritic cells. Blood 108, 4009–4017 (2006).
  • Munroe D, Jacobson A. mRNA Poly(A) tail a 3′ enhancer of translational initiation. Mol. Cell. Biol. 10, 3441–3455 (1990).
  • Mockey M, Gonçalves C, Dupuy FP, Lemoine FM, Pichon C, Midoux P. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem. Biophys. Res. Comm. 340, 1062–1068 (2006).
  • Tcherepanova IY, Adams MD, Feng X et al. Ectopic expression of a truncated CD40L protein from synthetic posttranscriptionally capped RNA in dendritic cells induces high levels of IL-12 secretion. BMC Mol. Biol. 9, 90 (2008).
  • van der Velden AW, Thomas AA. The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int. J. Biochem. Cell Biol. 31, 87–106 (1999).
  • Jansen RP. mRNA localization: message on the move. Nat. Rev. Mol. Cell Biol. 2, 247–256 (2001).
  • Bashirullah A, Cooperstock RL, Lipshitz HD. Spatial and temporal control of RNA stability. Proc. Natl Acad. Sci. USA 98, 7025–7028 (2001).
  • Turanov AA, Lobanov AV, Hatfield DL, Gladyshev VN. UGA-position dependent incorporation of selenocysteine into mammalian selenoproteins. Nucl. Acid Res. 41, 6952–6959 (2013).
  • Walczak R, Westhof E, Carbon P, Krol A. A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA 2, 367–379 (1996).
  • Mignone F, Gissi C, Liuni S, Pesole G. Untranslated regions of mRNAs. Genome Biol. 3, 0004 (2002).
  • Deo RC, Bonanno JB, Sonenberg N, Burley SK. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98, 835–845 (1999).
  • Zhao Y, Moon E, Carpenito C et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 70, 9053–9061 (2010).
  • Kreiter S, Selmi A, Diken M et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 70, 9031–9040 (2010).
  • Kreiter S, Selmi A, Diken M et al. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J. Immunology 180, 309–318 (2008).
  • Hornung V, Ellegast J, Kim S et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).
  • Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).
  • Kariko K, Muramatsu H, Welsh FA et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).
  • Kariko K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucl. Acids Res. 39, e142 (2011).
  • Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo. Science 247, 4949, 1465–1468 (1990).
  • Conry RM, LoBuglio AF, Wright M et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 55, 1397–1400 (1995).
  • Steitz J, Britten CM, Wolfel T, Tuting T. Effective induction of anti-melanoma immunity following genetic vaccination with synthetic mRNA coding for the fusion protein EGFP.TRP2. Cancer Immunol. Immunother. 55, 246–253 (2006).
  • Fotin-Mleczek M, Duchardt KM, Lorenz C et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J. Immunother. 34, 1–15 (2011).
  • Houseley J, Tollervey D. The many pathways of RNA degradation. Cell 136, 763–776 (2009).
  • Probst J, Brechtel S, Scheel B et al. Characterization of the ribonuclease activity on the skin surface. Genetic Vacc. Ther. 4, 4 (2006).
  • Qiu P, Ziegelhoffer P, Sun J, Yang NS. Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther. 3, 262–268 (1996).
  • Dileo J, Miller TE Jr, Chesnoy S, Huang L. Gene transfer to subdermal tissues via a new gene gun design. Human Gene Ther. 14, 79–87 (2003).
  • Scheel B, Aulwurm S, Probst J et al. Therapeutic anti-tumor immunity triggered by injections of immunostimulating singlestrandedRNA. Eur. J. Immunol. 36, 2807–2816 (2006).
  • Scheel B, Teufel R, Probst J et al. Toll-like receptor-dependent activation of several human blood cell types by protamine condensed mRNA. Eur. J. Immunol. 35, 1557–1566 (2005).
  • Sköld AE, van Beek JJ, Sittig SP et al. Protamine-stabilized RNA as an ex vivo stimulant of primary human dendritic cell subsets. Cancer Immunol. Immunother. 64, 1461–1473 (2015).
  • Hoerr I, Obst R, Rammensee HG, Jung G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur. J. Immunol 30, 1–7 (2000).
  • Weide B, Pascolo S, Scheel B et al. Direct injection of protamine- protected mRNA: results of a Phase I/II vaccination trial in metastatic melanoma patients. J. Immunother. 32, 498–507 (2009).
  • McKee AS, Marrack P. Old and new adjuvants. Curr. Opin. Immunol. 47, 44–51 (2017).
  • Akasaki Y, Kikuchi T, Irie M et al. Cotransfection of Poly(I:C) and siRNA of IL-10 into fusions of dendritic and glioma cells enhances antitumor T helper type induction in patients with glioma. J. Immunother. 34, 121.128 (2011).
  • Kreiter S, Diken M, Selmi A, Tureci O, Sahin U. Tumor vaccination using messenger RNA: prospects of a future therapy. Curr. Opin. Immunol. 23, 399–406 (2011).
  • Sahin U, Kariko K, Tureci O. mRNA-based therapeutics – developing a new class of drugs. Nature Rev. Drug Discov. 13, 759–780 (2014).
  • Schlake T, Thess A, Fotin-Mleczek M, Kallen K-J. Developing mRNA-vaccine technologies. RNA Biol. 9, 1319–1330 (2012).
  • Sayour EJ, Sanchez-Perez L, Flores C, Mitchell DA. Bridging infectious disease vaccines with cancer immunotherapy: a role for targeted RNA based immunotherapeutics. J. Immunother. Cancer 3, 13 (2015).
  • Bettinger T, Read ML. Recent developments in RNA based strategies for cancer gene therapy. Curr. Opin. Mol. Ther. 3, 116–124 (2001).
  • Lu D, Benjamin R, Kim M, Conry RM, Curiel DT. Optimization of methods to achieve mRNA-mediated transfection of tumor cells in vitro and in vivo employing cationic liposome vectors. Cancer Gene Ther. 1, 245–252 (1994).
  • Wasungu L, Hoekstra D. Cationic lipids lipoplexes and intracellular delivery of genes. J. Control. Rel. 116, 255–264 (2006).
  • Little SR, Lynn DM, Ge Q et al. Poly-β amino estercontaining microparticles enhance the activity of nonviral genetic vaccines. Proc. Natl Acad. Sci. USA 101, 9534–9539 (2004).
  • Phua KKL, Leong KW, Nair SK. Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format. J. Control. Rel. 166, 227–233 (2013).
  • Su X, Fricke J, Kavanagh DG, Irvine DJ. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol. Pharmaceutics 8, 774–787 (2011).
  • Phua KKL, Nair SK, Leong KW. Messenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale 6, 7715–7729 (2014).
  • Phua KKL, Staats HF, Leong KW, Nair SK. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci. Rep. 4, 5128 (2014).
  • Hess PR, Boczkowski D, Nair SK, Snyder D, Gilboa E. Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol. Immunother. 55, 672–683 (2006).
  • Mockey M, Bourseau E, Chandrashekhar V et al. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipoplexes. Cancer Gene Ther. 14, 802–814 (2007).
  • Perche F, Benvegnu T, Berchel M et al. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 7, 445–453 (2011).
  • Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med. 184, 465–472 (1996).
  • Nair SK, Hull S, Coleman D, Gilboa E, Lyerly HK, Morse MA. Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. Int. J. Cancer 82, 121–124 (1999).
  • Ponsaerts P, Van Tendeloo VFI, Berneman ZN. Cancer immunotherapy usingRNA-loaded dendritic cells. Clin. Exp. Immunol. 134, 378–384 (2003).
  • Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy. Cur. Opin. Immunol. 15, 138–147 (2003).
  • Heiser A, Coleman D, Dannull J et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest. 109, 409–417 (2002).
  • Morse MA, Nair SK, Boczkowski D et al. The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Intl. J. Gastrointest. Cancer 32, 1–6 (2002).
  • Morse MA, Nair SK, Mosca PJ et al. Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Invest. 21, 341–349 (2003).
  • Caruso DA, Orme LM, Neale AM et al. Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro-Oncology 6, 236–246 (2004).
  • Nair SK, Morse M, Boczkowski D et al. Induction of tumor specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann. Surg. 235, 540–549 (2002).
  • Su Z, Dannull J, Heiser A et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res. 63, 2127–2133 (2003).
  • Dannull J, Su Z, Rizzieri D et al. Enhancement of vaccine mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 115, 3623–3633 (2005).
  • Bonehill A, Van Nuffel AMT, Corthals J et al. Single step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin. Cancer Res. 15, 3366–3375 (2009).
  • Kyte JA, Kvalheim G, Aamdal S, Sæb⊘e-Larssen S, Gaudernack G. Preclinical full-scale evaluation of dendritic cells transfected with autologous tumor-mRNA for melanoma vaccination. Cancer Gene Ther. 12, 579–591 (2005).
  • Schuurhuis DH, Verdijk P, Schreibelt G et al. In situ expression of tumor antigens by messenger RNA-electroporated dendritic cells in lymph nodes of melanoma patients. Cancer Res. 69, 2927–2934 (2009).
  • Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58, 491–562 (1994).
  • Pijlman GP, Suhrbier A, Khromykh AA. Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Exp. Opin. Biol. Ther. 6, 134–145 (2006).
  • Osakada F, Callaway EM. Design and generation of recombinant rabies virus vectors. Nat. Protoc. 8(8), 1583–1601 (2013).
  • An H, Kim GN, Kang CY. Genetically modified VSV(NJ) vector is capable of accommodating a large foreign gene insert and allows high level gene expression. Virus Res. 171(1), 168–177 (2013).
  • Radecke F, Spielhofer P, Schneider H et al. Rescue of measles viruses from cloned DNA. EMBO J. 14(23), 5773–5784 (1995).
  • Pyankov OV, Bodnev SA, Pyankova OG et al. A Kunjin replicon virus-like vaccine provides protection against Ebola virus infection in nonhuman primates. J. Infect. Dis. 212(Suppl. 2), S368–S371 (2015).
  • Marzi A, Robertson SJ, Haddock E et al. Ebola vaccine. VSV-EBOV rapidly protects macaques against infection with the 2014/2015 Ebola virus outbreak strain. Science 349, 739–742 (2015).
  • Wilson JA, Hart MK. Protection from Ebola virus mediated by cytotoxic T-lymphocytes specific for the viral nucleoprotein. J. Virol. 75, 2660–2664 (2001).
  • Huttner A, Dayer JA, Yerly S et al. The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomized double-blind, placebo-controlled Phase I/II trial. Lancet Infect. Dis. 15, 1156–1166 (2015).
  • Hu HM, Chen HW, Hsiao Y et al. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection. Hum. Vaccin. Immunother. 12, 1678–1689 (2016).
  • Kamrud KI, Coffield VM, Owens G et al. In vitro and in vivo characterization of microRNA-targeted alphavirus replicon and helper RNAs. J. Virol. 84, 7713–7725 (2010).
  • Bhomia M, Sharma A, Gayen M et al. Artificial microRNAs can effectively inhibit replication of Venezuelan equine encephalitis virus. Antivir. Res. 100, 429–434 (2013).
  • Hoang-Le D, Smeenk L, Anraku I et al. A Kunjin replicon vector encoding granulocyte macrophage colony-stimulating factor for intra-tumoral gene therapy. Gene Ther. 16(2), 190–199 (2009).
  • Garcia-Hernandez ML, Gray A, Hubby B, Klinger OJ, Kast WM. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res. 68, 861–869 (2008).
  • Martikainen M, Niittykoski M, von und zu Frauenberg M et al. MicroRNA-attenuated clone of virulent Semliki Forest virus overcomes antiviral type I interferon in resistant mouse CT-2A glioma. J. Virol. 89, 10637–10647 (2015).
  • Ying H, Zaks TZ, Wang RF et al. Cancer therapy using a self-replicating RNA vaccine. Nat. Med. 5, 823–827 (1999).
  • Pepini T, Pulichino AM, Carsillo T et al. Induction of an IFN-mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J. Immunol. 198, 4012–4024 (2017).
  • Démoulins T, Englezou PC, Milona P et al. Self-replicating RNA vaccine delivery to dendritic cells. Methods Mol. Biol. 1499, 37–75 (2017).
  • Beissert T, Koste L, Perkovic M et al. Improvement of in vivo expression of genes delivered by self-amplifying RNA using vaccinia virus immune evasion proteins. Hum. Gene Ther. 28, 1138–1146 (2017).
  • Slovin SF, Kehoe M, Durso R et al. A Phase I dose escalation trial of vaccine replicon particles (VRP) expressing prostate-specific membrane antigen (PSMA) in subjects with prostate cancer. Vaccine 31, 943–949 (2013).
  • Lundstrom K, Boulikas T. Breakthrough in cancer therapy: encapsulation of drugs and viruses. Curr Drug Discov. 11, 19–23 (2002).
  • Lundstrom K. RNA-based drugs and vaccines. Exp. Rev. Vacc. 14, 253–263 (2015).
  • Schultheis B, Strumberg D, Santel A et al. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J. Clin. Oncol. 32, 4141–4148 (2014).
  • Arbutus Biopharma. ARB-1467 ( RNAi). www.arbutusbio.com/portfolio/arb-1467-rnai.php.
  • Quark QPI-1007. http://quarkpharma.com/?page_id=23.
  • Moderna Therapeutics. Pipeline. www.modernatx.com/pipeline.
  • Tian H, Zhou C, Yang J, Li J, Gong Z. Long and short noncoding RNAs in lung cancer precision medicine: Opportunities and challenges. Tumour Biol. 39(4), 1010428317697578 (2017).
  • Pardi N, Hogan MJ, Pelc RS et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543, 248–251 (2017).
  • Reynard O, Mokhonov V, Mokhonova E et al. Kunjin virus replicon-based vaccines expressing Ebola virus glycoprotein GP protect the guinea pig against lethal Ebola virus infection. J. Infect. Dis. 204(Suppl. 3), S1060–S1065 (2011).
  • Pushko P, Bray M, Ludwig GV et al. Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola hemorrhagic fever virus. Vaccine 19, 142–153 (2000).
  • Anraku I, Mokhonov VV, Rattanasena P et al. Kunjin replicon-based simian immunodeficiency virus gag vaccines. Vaccine 26, 3268–3276 (2008).
  • Grabbe S, Haas H, Diken M, Kranz LM, Langguth P, Sahin U. Translating nanoparticulate-personalized cancer vaccines into clinical applications: case study with RNA-lipoplexes for the treatment of melanoma. Nanomedicine 11, 2723–2734 (2016).
  • Heesen L, Jabulowksy R, Loquai C et al. A first-in-human Phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles encoding shared tumor antigens for potent immunotherapy. Presented at: ESMO Oncology-Immunology Congress 2017. Geneva, Switzerland, 7–10 December 2017 ( Poster 49P).
  • Gousseinov E, Kozlov M, Scanlan C et al. RNA-based therapeutics and vaccines. Genetic Engineering & Biotechnology News. 15 September 2015. www.genengnews.com/gen-exclusives/rna-based-therapeutics-and-vaccines/77900520.