10,593
Views
187
CrossRef citations to date
0
Altmetric
Review

Bromodomain and Extra-Terminal Motif Inhibitors: a Review of Preclinical and Clinical Advances in Cancer Therapy

, , , , , , & show all
Article: FSO372 | Received 21 Nov 2018, Accepted 04 Jan 2019, Published online: 29 Jan 2019

References

  • Choudhary C, Kumar C, Gnad F et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942), 834–840 (2009).
  • Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20(8), 615–626 (1998).
  • Lombardi PM, Cole KE, Dowling DP, Christianson DW. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr. Opin. Struct. Biol. 21(6), 735–743 (2011).
  • Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13(5), 337–356 (2014).
  • Barneda-Zahonero B, Parra M. Histone deacetylases and cancer. Mol. Oncol. 6(6), 579–589 (2012).
  • Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735), 491–496 (1999).
  • Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6(4), a018713 (2014).
  • Chen Y, Fu LL, Wen X et al. Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis. 5, e1047 (2014).
  • Anand P, Brown JD, Lin CY et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154(3), 569–582 (2013).
  • Sanchez R, Meslamani J, Zhou MM. The bromodomain: from epigenome reader to druggable target. Biochim. Biophys. Acta 1839(8), 676–685 (2014).
  • Barbieri I, Cannizzaro E, Dawson MA. Bromodomains as therapeutic targets in cancer. Brief. Funct. Genomics 12(3), 219–230 (2013).
  • Zhang G, Sanchez R, Zhou MM. Scaling the druggability landscape of human bromodomains, a new class of drug targets. J. Med. Chem. 55(17), 7342–7345 (2012).
  • Loven J, Hoke HA, Lin CY et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153(2), 320–334 (2013).
  • Filippakopoulos P, Qi J, Picaud S et al. Selective inhibition of BET bromodomains. Nature 468(7327), 1067–1073 (2010).
  • Fu LL, Tian M, Li X et al. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery. Oncotarget 6(8), 5501–5516 (2015).
  • Houzelstein D, Bullock SL, Lynch DE, Grigorieva EF, Wilson VA, Beddington RS. Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol. Cell. Biol. 22(11), 3794–3802 (2002).
  • Devaiah BN, Singer DS. Cross-talk among RNA polymerase II kinases modulates C-terminal domain phosphorylation. J. Biol. Chem. 287(46), 38755–38766 (2012).
  • Rahman S, Sowa ME, Ottinger M et al. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol. Cell. Biol. 31(13), 2641–2652 (2011).
  • Vollmuth F, Blankenfeldt W, Geyer M. Structures of the dual bromodomains of the P-TEFb-activating protein Brd4 at atomic resolution. J. Biol. Chem. 284(52), 36547–36556 (2009).
  • Devaiah BN, Singer DS. Two faces of Brd4: mitotic bookmark and transcriptional lynchpin. Transcription 4(1), 13–17 (2013).
  • Zhao R, Nakamura T, Fu Y, Lazar Z, Spector DL. Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat. Cell Biol. 13(11), 1295–1304 (2011).
  • Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer 12(7), 465–477 (2012).
  • Herait PE, Berthon C, Thieblemont C et al. Abstract CT231: BET-bromodomain inhibitor OTX015 shows clinically meaningful activity at nontoxic doses: interim results of an ongoing Phase I trial in hematologic malignancies. Cancer Res. 74(19 Suppl.), CT231–CT231 (2014).
  • Stewart HJ, Horne GA, Bastow S, Chevassut TJ. BRD4 associates with p53 in DNMT3A-mutated leukemia cells and is implicated in apoptosis by the bromodomain inhibitor JQ1. Cancer Med. 2(6), 826–835 (2013).
  • Dawson MA, Prinjha RK, Dittmann A et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478(7370), 529–533 (2011).
  • Zuber J, Shi J, Wang E et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478(7370), 524–528 (2011).
  • Mertz JA, Conery AR, Bryant BM et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl Acad. Sci. USA 108(40), 16669–16674 (2011).
  • Ott CJ, Kopp N, Bird L et al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 120(14), 2843–2852 (2012).
  • Vita M, Henriksson M. The Myc oncoprotein as a therapeutic target for human cancer. Semin. Cancer Biol. 16(4), 318–330 (2006).
  • Feng Q, Zhang Z, Shea MJ et al. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res. 24(7), 809–819 (2014).
  • Chen H, Liu H, Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal. Transduct. Target Ther. 3, 5 (2018).
  • Pastori C, Daniel M, Penas C et al. BET bromodomain proteins are required for glioblastoma cell proliferation. Epigenetics 9(4), 611–620 (2014).
  • Klein K, Kabala PA, Grabiec AM et al. The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Ann. Rheum. Dis. 75(2), 422–429 (2016).
  • Muller S, Filippakopoulos P, Knapp S. Bromodomains as therapeutic targets. Expert Rev. Mol. Med. 13, e29 (2011).
  • Grayson AR, Walsh EM, Cameron MJ et al. MYC, a downstream target of BRD-NUT, is necessary and sufficient for the blockade of differentiation in NUT midline carcinoma. Oncogene 33(13), 1736–1742 (2014).
  • Sachchidanand, Resnick-Silverman L, Yan S et al. Target structure-based discovery of small molecules that block human p53 and CREB binding protein association. Chem. Biol. 13(1), 81–90 (2006).
  • Borah JC, Mujtaba S, Karakikes I et al. A small molecule binding to the coactivator CREB-binding protein blocks apoptosis in cardiomyocytes. Chem. Biol. 18(4), 531–541 (2011).
  • Ceribelli M, Kelly PN, Shaffer AL et al. Blockade of oncogenic IkappaB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors. Proc. Natl Acad. Sci. USA 111(31), 11365–11370 (2014).
  • Picaud S, Da Costa D, Thanasopoulou A et al. PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains. Cancer Res. 73(11), 3336–3346 (2013).
  • Beesley AH, Stirnweiss A, Ferrari E et al. Comparative drug screening in NUT midline carcinoma. Br. J. Cancer 110(5), 1189–1198 (2014).
  • Beroukhim R, Mermel CH, Porter D et al. The landscape of somatic copy-number alteration across human cancers. Nature 463(7283), 899–905 (2010).
  • Jain M, Arvanitis C, Chu K et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297(5578), 102–104 (2002).
  • Soucek L, Helmer-Citterich M, Sacco A, Jucker R, Cesareni G, Nasi S. Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene 17(19), 2463–2472 (1998).
  • Soucek L, Jucker R, Panacchia L, Ricordy R, Tato F, Nasi S. Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis. Cancer Res. 62(12), 3507–3510 (2002).
  • Vervoorts J, Luscher-Firzlaff JM, Rottmann S et al. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. Embo. Rep. 4(5), 484–490 (2003).
  • Frank SR, Parisi T, Taubert S et al. MYC recruits the TIP60 histone acetyltransferase complex to chromatin. Embo. Rep. 4(6), 575–580 (2003).
  • Shou Y, Martelli ML, Gabrea A et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc. Natl Acad. Sci. USA 97(1), 228–233 (2000).
  • Delmore JE, Issa GC, Lemieux ME et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6), 904–917 (2011).
  • Loosveld M, Castellano R, Gon S et al. Therapeutic targeting of c-Myc in T-cell acute lymphoblastic leukemia, T-ALL. Oncotarget 5(10), 3168–3172 (2014).
  • Fiskus W, Sharma S, Qi J et al. BET protein antagonist JQ1 is synergistically lethal with FLT3 tyrosine kinase inhibitor (TKI) and overcomes resistance to FLT3-TKI in AML cells expressing FLT-ITD. Mol. Cancer Ther. 13(10), 2315–2327 (2014).
  • Liu S, Walker SR, Nelson EA et al. Targeting STAT5 in hematologic malignancies through inhibition of the bromodomain and extra-terminal (BET) bromodomain protein BRD2. Mol. Cancer Ther. 13(5), 1194–1205 (2014).
  • Hogg SJ, Vervoort SJ, Deswal S et al. BET-bromodomain inhibitors engage the host immune system and regulate expression of the immune checkpoint ligand PD-L1. Cell Rep. 18(9), 2162–2174 (2017).
  • Henssen A, Thor T, Odersky A et al. BET bromodomain protein inhibition is a therapeutic option for medulloblastoma. Oncotarget 4(11), 2080–2095 (2013).
  • Venkataraman S, Alimova I, Balakrishnan I et al. Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget 5(9), 2355–2371 (2014).
  • Bandopadhayay P, Bergthold G, Nguyen B et al. BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin. Cancer Res. 20(4), 912–925 (2014).
  • Cheng Z, Gong Y, Ma Y et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin. Cancer Res. 19(7), 1748–1759 (2013).
  • Taylor IC, Hutt-Cabezas M, Brandt WD et al. Disrupting NOTCH slows diffuse intrinsic pontine glioma growth, enhances radiation sensitivity, and shows combinatorial efficacy with bromodomain inhibition. J. Neuropathol. Exp. Neurol. 74(8), 778–790 (2015).
  • Suzuki H, Gabrielson E, Chen W et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat. Genet. 31(2), 141–149 (2002).
  • Vedeld HM, Merok M, Jeanmougin M et al. CpG island methylator phenotype identifies high risk patients among microsatellite stable BRAF mutated colorectal cancers. Int. J. Cancer 141(5), 967–976 (2017).
  • Xiang JF, Yin QF, Chen T et al. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 24(5), 513–531 (2014).
  • Mccleland ML, Mesh K, Lorenzana E et al. CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J. Clin. Invest. 126(2), 639–652 (2016).
  • Zhang Y, Tian S, Xiong J, Zhou Y, Song H, Liu C. JQ-1 inhibits colon cancer proliferation via suppressing Wnt/β-catenin signaling and miR-21. Chem. Res. Toxicol. 31(5), 302–307 (2018).
  • Bihani T, Ezell SA, Ladd B et al. Resistance to everolimus driven by epigenetic regulation of MYC in ER+ breast cancers. Oncotarget 6(4), 2407–2420 (2015).
  • Borbely G, Haldosen LA, Dahlman-Wright K, Zhao C. Induction of USP17 by combining BET and HDAC inhibitors in breast cancer cells. Oncotarget 6(32), 33623–33635 (2015).
  • Nieto-Jimenez C, Alcaraz-Sanabria A, Perez-Pena J et al. Targeting basal-like breast tumors with bromodomain and extraterminal domain (BET) and polo-like kinase inhibitors. Oncotarget 8(12), 19478–19490 (2017).
  • Vazquez R, Riveiro ME, Astorgues-Xerri L et al. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus. Oncotarget 8(5), 7598–7613 (2017).
  • Perez-Salvia M, Simo-Riudalbas L, Llinas-Arias P et al. Bromodomain inhibition shows antitumoral activity in mice and human luminal breast cancer. Oncotarget 8(31), 51621–51629 (2017).
  • Stuhlmiller TJ, Miller SM, Zawistowski JS et al. Inhibition of lapatinib-induced kinome reprogramming in ERBB2-positive breast cancer by targeting BET family bromodomains. Cell Rep. 11(3), 390–404 (2015).
  • Andrieu G, Belkina AC, Denis GV. Clinical trials for BET inhibitors run ahead of the science. Drug Discov. Today Technol. 19, 45–50 (2016).
  • Coude MM, Braun T, Berrou J et al. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget 6(19), 17698–17712 (2015).
  • Boi M, Gaudio E, Bonetti P et al. The BET bromodomain inhibitor OTX015 affects pathogenetic pathways in preclinical B-cell tumor models and synergizes with targeted drugs. Clin. Cancer Res. 21(7), 1628–1638 (2015).
  • Bai L, Zhou B, Yang CY et al. Targeted degradation of BET proteins in triple-negative breast cancer. Cancer Res. 77(9), 2476–2487 (2017).
  • Bui MH, Lin X, Albert DH et al. Preclinical characterization of BET family bromodomain inhibitor ABBV-075 suggests combination therapeutic strategies. Cancer Res. 77(11), 2976–2989 (2017).
  • Long J, Li B, Rodriguez-Blanco J et al. The BET bromodomain inhibitor I-BET151 acts downstream of smoothened protein to abrogate the growth of hedgehog protein-driven cancers. J. Biol. Chem. 289(51), 35494–35502 (2014).
  • Chaidos A, Caputo V, Gouvedenou K et al. Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762. Blood 123(5), 697–705 (2014).
  • Dawson MA, Gudgin EJ, Horton SJ et al. Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia. Leukemia 28(2), 311–320 (2014).
  • Garnier JM, Sharp PP, Burns CJ. BET bromodomain inhibitors: a patent review. Expert Opin. Ther. Pat. 24(2), 185–199 (2014).
  • Wyce A, Degenhardt Y, Bai Y et al. Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer. Oncotarget 4(12), 2419–2429 (2013).
  • Wyce A, Ganji G, Smitheman KN et al. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models. PLoS ONE 8(8), e72967 (2013).
  • Moros A, Rodriguez V, Saborit-Villarroya I et al. Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma. Leukemia 28(10), 2049–2059 (2014).
  • Diaz T, Rodriguez V, Lozano E et al. The BET bromodomain inhibitor CPI203 improves lenalidomide and dexamethasone activity in in vitro and in vivo models of multiple myeloma by blockade of Ikaros and MYC signaling. Haematologica 102(10), 1776–1784 (2017).
  • De Paula Careta F, Gobessi S, Panepucci RA et al. The Aurora A and B kinases are up-regulated in bone marrow-derived chronic lymphocytic leukemia cells and represent potential therapeutic targets. Haematologica 97(8), 1246–1254 (2012).
  • Thorsteinsdottir U, Mamo A, Kroon E et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 99(1), 121–129 (2002).
  • Picaud S, Wells C, Felletar I et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc. Natl Acad. Sci. USA 110(49), 19754–19759 (2013).
  • Kempen HJ, Bellus D, Fedorov O et al. Stimulation of hepatic apolipoprotein A-I production by novel thieno-triazolodiazepines: roles of the classical benzodiazepine receptor, PAF receptor, and bromodomain binding. Lipid Insights 6, 47–54 (2013).
  • Fabre C, Gobbi M, Ezzili C et al. Clinical study of the novel cyclin-dependent kinase inhibitor dinaciclib in combination with rituximab in relapsed/refractory chronic lymphocytic leukemia patients. Cancer Chemother. Pharmacol. 74(5), 1057–1064 (2014).
  • Martin MP, Olesen SH, Georg GI, Schonbrunn E. Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. ACS Chem. Biol. 8(11), 2360–2365 (2013).
  • Massard C, Soria JC, Stathis A et al. A Phase Ib trial with MK-8628/OTX015, a small molecule inhibitor of bromodomain (BRD) and extra-terminal (BET) proteins, in patients with selected advanced solid tumors. Eur. J. Cancer 69, S2–S3 (2016).
  • Postel-Vinay S, Herbschleb K, Massard C et al. First-in-human Phase I dose escalation study of the Bromodomain and Extra-Terminal motif (BET) inhibitor BAY 1238097 in subjects with advanced malignancies. Eur. J. Cancer 69, S7–S8 (2016).
  • Stathis A, Zucca E, Bekradda M et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 6(5), 492–500 (2016).
  • Bernasconi E, Gaudio E, Lejeune P et al. Preclinical evaluation of the BET bromodomain inhibitor BAY 1238097 for the treatment of lymphoma. Br. J. Haematol. 178(6), 936–948 (2017).
  • Borthakur G, Wolff J, Aldoss I et al. First-In-Human Study of ABBV-075 (Mivebresib), a pan-inhibitor of bromodomain and extra terminal (BET) proteins, in patients (Pts) with relapsed/refractory (RR) acute myeloid leukemia (AML): preliminary data. Clin. Lymphoma, Myeloma Leuk. 18, S203 (2018).
  • Stratikopoulos EE, Dendy M, Szabolcs M et al. Kinase and BET inhibitors together clamp inhibition of PI3K signaling and overcome resistance to therapy. Cancer Cell 27(6), 837–851 (2015).
  • Tontsch-Grunt U, Savarese F, Baum A et al. Combination of the novel BET inhibitor BI 894999 with CDK9 inhibition suggests a promising regimen for the treatment of AML. Eur. J. Cancer 69, S89 (2016).
  • Bolin S, Borgenvik A, Persson C et al. Abstract 2473: combined BET-bromodomain and CDK2 inhibition in MYC-driven medulloblastoma. Cancer Res. 76(14 Suppl.), 2473–2473 (2016).
  • Muralidharan SV, Bhadury J, Nilsson LM, Green LC, Mclure KG, Nilsson JA. BET bromodomain inhibitors synergize with ATR inhibitors to induce DNA damage, apoptosis, senescence-associated secretory pathway and ER stress in Myc-induced lymphoma cells. Oncogene 35(36), 4689–4697 (2016).
  • Peirs S, Frismantas V, Matthijssens F et al. Targeting BET proteins improves the therapeutic efficacy of BCL-2 inhibition in T-cell acute lymphoblastic leukemia. Leukemia 31(10), 2037–2047 (2017).
  • Sarker D, Ang JE, Baird R et al. First-in-human Phase I study of pictilisib (GDC-0941), a potent pan-Class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. 21(1), 77–86 (2015).
  • Bauer K, Berger D, Zielinski CC, Valent P, Grunt TW. Hitting two oncogenic machineries in cancer cells: cooperative effects of the multi-kinase inhibitor ponatinib and the BET bromodomain blockers JQ1 or dBET1 on human carcinoma cells. Oncotarget 9(41), 26491–26506 (2018).
  • Jang JE, Eom JI, Jeung HK et al. Targeting AMPK-ULK1-mediated autophagy for combating BET inhibitor resistance in acute myeloid leukemia stem cells. Autophagy 13(4), 761–762 (2017).
  • Jang JE, Eom JI, Jeung HK et al. AMPK-ULK1-mediated autophagy confers resistance to BET inhibitor JQ1 in acute myeloid leukemia stem cells. Clin. Cancer Res. 23(11), 2781–2794 (2017).
  • Wu T, Wang G, Chen W et al. Co-inhibition of BET proteins and NF-kappaB as a potential therapy for colorectal cancer through synergistic inhibiting MYC and FOXM1 expressions. Cell Death Dis. 9(3), 315 (2018).
  • Ling YH, Liebes L, Ng B et al. PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2-M phase arrest and apoptosis. Mol. Cancer Ther. 1(10), 841–849 (2002).
  • Rathert P, Roth M, Neumann T et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 525(7570), 543–547 (2015).
  • Kumar K, Raza SS, Knab LM et al. GLI2-dependent c-MYC upregulation mediates resistance of pancreatic cancer cells to the BET bromodomain inhibitor JQ1. Sci. Rep. 5, 9489 (2015).
  • Shu S, Lin CY, He HH et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature 529(7586), 413–417 (2016).
  • Lucas X, Wohlwend D, Hugle M et al. 4-Acyl pyrroles: mimicking acetylated lysines in histone code reading. Angew. Chem. Int. Ed. Engl. 52(52), 14055–14059 (2013).
  • Bolden JE, Tasdemir N, Dow LE et al. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep. 8(6), 1919–1929 (2014).
  • Aftimos PG, Bechter O, Awada A et al. Phase I first-in-man trial of a novel bromodomain and extra-terminal domain (BET) inhibitor (BI 894999) in patients (Pts) with advanced solid tumors. J. Clin. Oncol. 35(15 Suppl.), 2504–2504 (2017).
  • Blum KA, Abramson J, Maris M et al. 41OA Phase I study of CPI-0610, a bromodomain and extra terminal protein (BET) inhibitor in patients with relapsed or refractory lymphoma. Ann. Oncol. 29(Suppl. 3), mdy048–mdy048 (2018).
  • Hottinger AF, Sanson M, Moyal E et al. Dose optimization of MK-8628 (OTX015), a small molecule inhibitor of bromodomain and extra-terminal (BET) proteins, in patients (pts) with recurrent glioblastoma (GB). J. Clin. Oncol. 34(15 Suppl.), e14123–e14123 (2016).
  • Berthon C, Raffoux E, Thomas X et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, Phase 1 study. Lancet Haematol. 3(4), e186–e195 (2016).
  • Amorim S, Stathis A, Gleeson M et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, Phase 1 study. Lancet Haematol. 3(4), e196–e204 (2016).
  • Patnaik A, Carvajal RD, Komatsubara KM et al. Phase Ib/2a study of PLX51107, a small molecule BET inhibitor, in subjects with advanced hematological malignancies and solid tumors. J. Clin. Oncol. 36(15 Suppl.), 2550–2550 (2018).
  • Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer. Cell 168(4), 629–643 (2017).