1,064
Views
1
CrossRef citations to date
0
Altmetric
Editorial

Pinpointing Dynamic Coupling in Enzymes for Efficient Drug Design

&
Article: FSO95 | Received 14 Dec 2015, Accepted 21 Dec 2015, Published online: 25 Jan 2016

References

  • Fischer HE . Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Dtsch Chem. Ges.27, 2985–2993 (1894).
  • Haldane JBS . Enzymes. Longmans, Green, London, UK (1930).
  • Polanyi M . Über Adsorptionskatalyse. Z. Electrochem.27, 143–52 (1921).
  • Glasstone S , LaidlerKJ, EyringH. The Theory Of Rate Processes: The Kinetics Of Chemical Reactions, Viscosity, Diffusion And Electrochemical Phenomena. McGraw-Hill, NY, USA (1941).
  • Pauling L . Nature of forces between large molecules of biological interest. Nature161, 707–709 (1948).
  • Schramm VL . Enzymatic transition state poise and transition state analogues. Acc. Chem. Res.36, 588–596 (2003).
  • Cleland WW . The use of isotope effects to determine enzyme mechanisms. J. Biol. Chem.278, 51975–51984 (2003).
  • Koshland DE . Application of a theory of enzyme specificity to protein synthesis. Proc. Natl Acad. Sci. USA44, 98–104 (1958).
  • Hammes GG , BenkovicSJ, Hammes-SchifferS. Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Biochemistry50, 10422–10430 (2011).
  • Warshel A , SharmaPK, KatoM, XiangY, LiuH, OlssonMHM. Electrostatic basis for enzyme catalysis. Chem. Rev.106, 3210–3235 (2006).
  • Silva RG , MurkinAS, SchrammVL. Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme. Proc. Natl Acad. Sci. USA108, 18661–18665 (2011).
  • Kipp DR , SilvaRG, SchrammVL. Mass-dependent bond vibrational dynamics influence catalysis by HIV-1 protease. J. Am. Chem. Soc.133, 19358–19361 (2011).
  • Sawaya MR , KrautJ. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry36, 586–603 (1997).
  • Boehr DD , McElhenyD, DysonHJ, WrightPE. The dynamic energy landscape of dihydrofolate reductase catalysis. Science313, 1638–1642 (2006).
  • Luk LYP , Ruiz-PerniaJJ, DawsonWMet al. Unraveling the role of protein dynamics in dihydrofolate reductase catalysis. Proc. Natl Acad. Sci. USA110, 16344–16349 (2013).
  • Ruiz-Pernia JJ , LukLYP, García-MeseguerRet al. Increased dynamic effects in a catalytically compromised variant of escherichia coli dihydrofolate reductase. J. Am. Chem. Soc.135, 18689–18696 (2013).
  • Luk LYP , LoveridgeEJ, AllemannRK. Different dynamical effects in mesophilic and hyperthermophilic dihydrofolate reductases. J. Am. Chem. Soc.136, 6862–6865 (2014).
  • Luk LYP , Ruiz-PerníaJJ, DawsonWMet al. Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic–enthalpic compensatory effects on the rate constant. J. Am. Chem. Soc.136, 17317–17323 (2014).
  • Luk LYP , Ruiz-PerníaJJ, AdesinaASet al. Chemical ligation and isotope labeling to locate dynamic effects during catalysis by dihydrofolate reductase. Angew. Chem. Int. Ed. Engl.54, 9016–9020 (2015).
  • Dawson PE , MuirTW, Clark-LewisI, KentSB. Synthesis of proteins by native chemical ligation. Science266, 776–779 (1994).
  • Suarez J , SchrammVL. Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase. Proc. Natl Acad. Sci. USA112, 11247–11251 (2015).
  • Lewandowicz A , SchrammVL. Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases. Biochemistry43, 1458–1468 (2004).
  • Ho MC , ShiWX, Rinaldo-MatthisAet al. Four generations of transition-state analogues for human purine nucleoside phosphorylase. Proc. Natl Acad. Sci. USA107, 4805–4812 (2010).
  • Ducati RG , Namanja-MaglianoHA, SchrammVL. Transition-state inhibitors of purine salvage and other prospective enzyme targets in malaria. Future Med. Chem.5, 1341–1360 (2013).
  • Peng JW . Communication breakdown: protein dynamics and drug design. Structure17, 319–320 (2009).