3,966
Views
0
CrossRef citations to date
0
Altmetric
Review

mRNA Vaccine Delivery Using Lipid Nanoparticles

, , , &
Pages 319-334 | Received 26 Jan 2016, Accepted 04 Mar 2016, Published online: 14 Apr 2016

References

  • Crawford NW Bines JE Royle J Buttery JP . Optimizing immunization in pediatric special risk groups. Expert Rev. Vaccines10 (2), 175–186 (2011).
  • Liu MA . Immunologic basis of vaccine vectors. Immunity33 (4), 504–515 (2010).
  • Hilleman MR . Recombinant vector vaccines in vaccinology. Dev. Biol. Stand.82, 3–20 (1994).
  • Deering RP Kommareddy S Ulmer JB Brito LA Geall AJ . Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin. Drug Deliv.11 (6), 885–899 (2014).
  • Pascolo S . Vaccination with messenger RNA (mRNA). In : Toll-Like Receptors (TLRs) and Innate Immunity. BauerPDSHartmannPDG ( Eds). Springer Berlin Heidelberg, Germany, 221–235 (2008).
  • Jäschke A Helm M . RNA sex. Chem. Biol.10 (12), 1148–1150 (2003).
  • Fotin-Mleczek M Duchardt KM Lorenz C et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J. Immunother.34 (1), 1–15 (2011).
  • Steinhagen F Kinjo T Bode C Klinman DM . TLR-based immune adjuvants. Vaccine29 (17), 3341–3355 (2011).
  • Sorrentino S . Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell. Mol. Life Sci. CMLS54 (8), 785–794 (1998).
  • Chira S Jackson CS Oprea I et al. Progresses towards safe and efficient gene therapy vectors. Oncotarget6 (31), 30675–30703 (2015).
  • Ku SH Jo SD Lee YK Kim K Kim SH . Chemical and structural modifications of RNAi therapeutics. Adv. Drug Deliv. Rev. doi:10.1016/j.addr.2015.10.015 (2015) ( Epub ahead of print).
  • Lundstrom K . Alphaviruses in gene therapy. Viruses1 (1), 13–25 (2009).
  • Ogris M Brunner S Schüller S Kircheis R Wagner E . PEGylated DNA/transferring–PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther.6 (4), 595–605 (1999).
  • Bessis N GarciaCozar FJ Boissier M-C . Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther.11 (S1), S10–S17 (2004).
  • Baum C Kustikova O Modlich U Li Z Fehse B . Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum. Gene Ther.17 (3), 253–263 (2006).
  • Waehler R Russell SJ Curiel DT . Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet.8 (8), 573–587 (2007).
  • Thomas CE Ehrhardt A Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet.4 (5), 346–358 (2003).
  • Bouard D Alazard-Dany N Cosset F-L . Viral vectors: from virology to transgene expression. Br. J. Pharmacol.157 (2), 153–165 (2009).
  • Gonzalez H Hwang SJ Davis ME . New class of polymers for the delivery of macromolecular therapeutics. Bioconjug. Chem.10 (6), 1068–1074 (1999).
  • Davis ME . The First Targeted Delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm.6 (3), 659–668 (2009).
  • Monopoli MP Åberg C Salvati A Dawson KA . Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol.7 (12), 779–786 (2012).
  • Lee H Lytton-Jean AKR Chen Y et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol.7 (6), 389–393 (2012).
  • Mintzer MA Simanek EE . Nonviral vectors for gene delivery. Chem. Rev.109 (2), 259–302 (2009).
  • Pack DW Hoffman AS Pun S Stayton PS . Design and development of polymers for gene delivery. Nat. Rev. Drug Discov.4 (7), 581–593 (2005).
  • Martin ME Rice KG . Peptide-guided gene delivery. AAPS J.9 (1), E18–E29 (2007).
  • Sokolova V Epple M . Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem. Int. Ed.47 (8), 1382–1395 (2008).
  • Whitehead KA Langer R Anderson DG . Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.8 (2), 129–138 (2009).
  • Heath WR Carbone FR . Cross-presentation in viral immunity and self-tolerance. Nat. Rev. Immunol.1 (2), 126–134 (2001).
  • Kasturi SP Pulendran B . Cross-presentation: avoiding trafficking chaos?Nat. Immunol.9 (5), 461–463 (2008).
  • Martinon F Krishnan S Lenzen G et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol.23 (7), 1719–1722 (1993).
  • Hess PR Boczkowski D Nair SK Snyder D Gilboa E . Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol. Immunother.55 (6), 672–683 (2005).
  • Zhou W-Z Hoon DSB Huang SKS et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum. Gene Ther.10 (16), 2719–2724 (1999).
  • Pollard C Rejman J De Haes W et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol. Ther.21 (1), 251–259 (2013).
  • Hoerr I Obst R Rammensee HG Jung G . In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur. J. Immunol.30 (1), 1–7 (2000).
  • Mockey M Bourseau E Chandrashekhar V et al. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther.14 (9), 802–814 (2007).
  • Perche F Benvegnu T Berchel M et al. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomed. Nanotechnol. Biol. Med.7 (4), 445–453 (2011).
  • Phua KKL Staats HF Leong KW Nair SK . Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci. Rep.4, 5128 (2014).
  • Geall AJ Verma A Otten GR et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl Acad. Sci. USA109 (36), 14604–14609 (2012).
  • Brito LA Chan M Shaw CA et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther.22 (12), 2118–2129 (2014).
  • Li W Jr FCS . Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res.24 (3), 438–449 (2007).
  • Kuntsche J Horst JC Bunjes H . Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm.417 (1), 120–137 (2011).
  • Zhigaltsev IV Maurer N Edwards K Karlsson G Cullis PR . Formation of drug–arylsulfonate complexes inside liposomes: a novel approach to improve drug retention. J. Control. Rel.110 (2), 378–386 (2006).
  • Sato Y Hatakeyama H Sakurai Y Hyodo M Akita H Harashima H . A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J. Control. Rel.163 (3), 267–276 (2012).
  • Kanasty R Dorkin JR Vegas A Anderson D . Delivery materials for siRNA therapeutics. Nat. Mater.12 (11), 967–977 (2013).
  • Basha G Novobrantseva TI Rosin N et al. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of sirna in antigen-presenting cells. Mol. Ther.19 (12), 2186–2200 (2011).
  • Sahay G Querbes W Alabi C et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol.31 (7), 653–658 (2013).
  • Semple SC Akinc A Chen J et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol.28 (2), 172–176 (2010).
  • Maier MA Jayaraman M Matsuda S et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther.21 (8), 1570–1578 (2013).
  • Jayaraman M Ansell SM Mui BL et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl.51 (34), 8529–8533 (2012).
  • Love KT Mahon KP Levins CG et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA107 (5), 1864–1869 (2010).
  • Whitehead KA Dorkin JR Vegas AJ et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun.5, 4277 (2014).
  • Dong Y Love KT Dorkin JR et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA111 (11), 3955–3960 (2014).
  • Cui L Chen D Zhu L . Conformation transformation determined by different self-assembled phases in a DNA complex with cationic polyhedral oligomeric silsesquioxane lipid. ACS Nano2 (5), 921–927 (2008).
  • Dobbs W Heinrich B Bourgogne C et al. Mesomorphic imidazolium salts: new vectors for efficient siRNA transfection. J. Am. Chem. Soc.131 (37), 13338–13346 (2009).
  • Smisterová J Wagenaar A Stuart MCA et al. Molecular shape of the cationic lipid controls the structure of cationic lipid/dioleylphosphatidylethanolamine–DNA complexes and the efficiency of gene delivery. J. Biol. Chem.276 (50), 47615–47622 (2001).
  • Hirsch-Lerner D Zhang M Eliyahu H Ferrari ME Wheeler CJ Barenholz Y . Effect of ‘helper lipid’ on lipoplex electrostatics. Biochim. Biophys. Acta BBA - Biomembr.1714 (2), 71–84 (2005).
  • Koiwai K Tokuhisa K Karinaga R et al. Transition from a normal to inverted cylinder for an amidine-bearing lipid/pDNA complex and its excellent transfection. Bioconjug. Chem.16 (6), 1349–1351 (2005).
  • Allen TM Cullis PR . Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev.65 (1), 36–48 (2013).
  • Lu JJ Langer R Chen J . A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery. Mol. Pharm.6 (3), 763–771 (2009).
  • Takahashi H Sinoda K Hatta I . Effects of cholesterol on the lamellar and the inverted hexagonal phases of dielaidoylphosphatidylethanolamine. Biochim. Biophys. Acta1289 (2), 209–216 (1996).
  • Zuhorn IS Bakowsky U Polushkin E et al. Nonbilayer phase of lipoplex–membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol. Ther.11 (5), 801–810 (2005).
  • Woodle MC . Sterically stabilized liposome therapeutics. Adv. Drug Deliv. Rev.16 (2), 249–265 (1995).
  • Belliveau NM Huft J Lin PJ et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids1 (8), e37 (2012).
  • Li S-D Huang L . Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J. Control. Rel. Off. J. Control Rel. Soc.145 (3), 178–181 (2010).
  • Buyens K De Smedt SC Braeckmans K et al. Liposome based systems for systemic siRNA delivery: stability in blood sets the requirements for optimal carrier design. J. Control Rel.158 (3), 362–370 (2012).
  • Blander JM Medzhitov R . Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature440 (7085), 808–812 (2006).
  • Schlosser E Mueller M Fischer S et al. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine26 (13), 1626–1637 (2008).
  • Lasic DD . The mechanism of vesicle formation. Biochem. J.256 (1), 1–11 (1988).
  • Naseri N Valizadeh H Zakeri-Milani P . Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv. Pharm. Bull.5 (3), 305–313 (2015).
  • Zhigaltsev IV Belliveau N Hafez I et al. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir28 (7), 3633–3640 (2012).
  • Huang C-H . Phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry (Mosc.)8 (1), 344–352 (1969).
  • Batzri S Korn ED . Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta BBA–Biomembr.298 (4), 1015–1019 (1973).
  • Semple SC Klimuk SK Harasym TO et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta BBA–Biomembr.1510 (1), 152–166 (2001).
  • Maurer N Wong KF Stark H et al. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys. J.80 (5), 2310–2326 (2001).
  • Berger N Sachse A Bender J Schubert R Brandl M . Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int. J. Pharm.223 (1), 55–68 (2001).
  • Jeffs LB Palmer LR Ambegia EG Giesbrecht C Ewanick S MacLachlan I . A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharm. Res.22 (3), 362–372 (2005).
  • Karnik R Gu F Basto P et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett.8 (9), 2906–2912 (2008).
  • Jahn A Vreeland WN DeVoe DL Locascio LE Gaitan M . Microfluidic directed formation of liposomes of controlled size. Langmuir23 (11), 6289–6293 (2007).
  • Stroock AD Dertinger SKW Ajdari A Mezić I Stone HA Whitesides GM . Chaotic mixer for microchannels. Science295 (5555), 647–651 (2002).
  • Leung AKK Tam YYC Chen S Hafez IM Cullis PR . Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J. Phys. Chem. B119 (28), 8698–8706 (2015).
  • Swartz MA . The physiology of the lymphatic system. Adv. Drug Deliv. Rev.50 (1), 3–20 (2001).
  • Allen TM Hansen CB Guo LSS . Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection. Biochim. Biophys. Acta BBA - Biomembr.1150 (1), 9–16 (1993).
  • Oussoren C Velinova M Scherphof G van der Want JJ van Rooijen N Storm G . Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: IV. Fate of liposomes in regional lymph nodes. Biochim. Biophys. Acta BBA - Biomembr.1370 (2), 259–272 (1998).
  • Henriksen-Lacey M Bramwell VW Christensen D Agger E-M Andersen P Perrie Y . Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J. Control. Rel.142 (2), 180–186 (2010).
  • Henriksen-Lacey M Christensen D Bramwell VW et al. Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), 3β-[n-(n′,n′-dimethylaminoethane)carbomyl], cholesterol (DC-Chol), and 1,2-dioleoyl-3-trimethylammonium propane (dotap): prolonged liposome retention mediates stronger Th1 responses. Mol. Pharm.8 (1), 153–161 (2011).
  • Ishida T Harashima H Kiwada H . Liposome clearance. Biosci. Rep.22 (2), 197–224 (2002).
  • Carstens MG Camps MGM Henriksen-Lacey M et al. Effect of vesicle size on tissue localization and immunogenicity of liposomal DNA vaccines. Vaccine29 (29), 4761–4770 (2011).
  • Kaur R Bramwell VW Kirby DJ Perrie Y . Pegylation of DDA:TDB liposomal adjuvants reduces the vaccine depot effect and alters the Th1/Th2 immune responses. J. Control Rel.158 (1), 72–77 (2012).
  • van den Berg JH Oosterhuis K Hennink WE et al. Shielding the cationic charge of nanoparticle-formulated dermal DNA vaccines is essential for antigen expression and immunogenicity. J. Control Rel.141 (2), 234–240 (2010).
  • Mishra S Webster P Davis ME . PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol.83 (3), 97–111 (2004).
  • Remaut K Lucas B Braeckmans K Demeester J De Smedt SC . Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides. J. Control Rel.117 (2), 256–266 (2007).
  • Yang Q Lai SK . Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.7 (5), 655–677 (2015).
  • Judge A McClintock K Phelps JR MacLachlan I . Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Mol. Ther.13 (2), 328–337 (2006).
  • Martinez-Pomares L . The mannose receptor. J. Leukoc. Biol.92 (6), 1177–1186 (2012).
  • Geijtenbeek TBH Torensma R van Vliet SJ et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell100 (5), 575–585 (2000).
  • Jiang W Swiggard WJ Heufler C et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature375 (6527), 151–155 (1995).
  • Valladeau J Ravel O Dezutter-Dambuyant C et al. Langerin, a novel C-Type lectin specific to langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity12 (1), 71–81 (2000).
  • Karanikas V Hwang LA Pearson J et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan–MUC1 fusion protein. J. Clin. Invest.100 (11), 2783–2792 (1997).
  • Espuelas S Thumann C Heurtault B Schuber F Frisch B . Influence of ligand valency on the targeting of immature human dendritic cells by mannosylated liposomes. Bioconjug. Chem.19 (12), 2385–2393 (2008).
  • Reina JJ Rojo J . Glycodendritic structures: tools to interact with DC-SIGN. Braz. J. Pharm. Sci.49 (SPE), 109–124 (2013).
  • Perche F Gosset D Mével M et al. Selective gene delivery in dendritic cells with mannosylated and histidylated lipopolyplexes. J. Drug Target.19 (5), 315–325 (2011).
  • Dudziak D Kamphorst AO Heidkamp GF et al. Differential antigen processing by dendritic cell subsets in vivo. Science315 (5808), 107–111 (2007).
  • Leroux-Roels G . Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine28 (Suppl. 3), C25–C36 (2010).
  • Almeida AJ Souto E . Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev.59 (6), 478–490 (2007).
  • Kedmi R Ben-Arie N Peer D . The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials31 (26), 6867–6875 (2010).
  • Kawai T Akira S . Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity34 (5), 637–650 (2011).
  • Yanasarn N Sloat BR Cui Z . Negatively charged liposomes show potent adjuvant activity when simply admixed with protein antigens. Mol. Pharm.8 (4), 1174–1185 (2011).
  • Adler-Moore J Munoz M Kim H et al. Characterization of the murine Th2 response to immunization with liposomal M2e influenza vaccine. Vaccine29 (27), 4460–4468 (2011).
  • Ravindran R Maji M Ali N . Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid–trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route. Mol. Pharm.9 (1), 59–70 (2012).
  • Rizwan SB McBurney WT Young K et al. Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J. Control Rel.165 (1), 16–21 (2013).
  • Shirota H Klinman DM . Recent progress concerning CpG DNA and its use as a vaccine adjuvant. Exp. Rev. Vaccines13 (2), 299–312 (2014).
  • Erikçi E Gursel M Gürsel İ . Differential immune activation following encapsulation of immunostimulatory CpG oligodeoxynucleotide in nanoliposomes. Biomaterials32 (6), 1715–1723 (2011).
  • Bal SM Hortensius S Ding Z Jiskoot W Bouwstra JA . Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine29 (5), 1045–1052 (2011).
  • Wu TY-H Singh M Miller AT et al. Rational design of small molecules as vaccine adjuvants. Sci. Transl. Med.6 (263), 263ra160–263ra160 (2014).
  • Jensen S Thomsen AR . Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J. Virol.86 (6), 2900–2910 (2012).
  • Sahin U Karikó K Türeci Ö . mRNA-based therapeutics–developing a new class of drugs. Nat. Rev. Drug Discov.13 (10), 759–780 (2014).
  • Balachandran S Roberts PC Brown LE et al. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity13 (1), 129–141 (2000).
  • Banerjee S Chakrabarti A Jha BK et al. Cell-type-specific effects of RNase L on viral induction of beta interferon. mBio5 (2), e00856–e00814 (2014); doi: 10.1128/mBio.00856-14.
  • Karikó K Buckstein M Ni H Weissman D . Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity23 (2), 165–175 (2005).
  • Karikó K Muramatsu H Welsh FA et al. Incorporation of pseudouridine into mrna yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. J. Am. Soc. Gene Ther.16 (11), 1833–1840 (2008).
  • Kübler H Scheel B Gnad-Vogt U et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man Phase I/IIa study. J. Immunother. Cancer3 (1), 26 (2015).
  • Riedmann EM . Human vaccines and immunotherapeutics. Hum. Vaccines Immunother.9 (10), 2034–2037 (2013).
  • Peabody DS . Translation initiation at non-AUG triplets in mammalian cells. J. Biol. Chem.264 (9), 5031–5035 (1989).
  • Malarkannan S Horng T Shih PP Schwab S Shastri N . Presentation of out-of-frame peptide/MHC Class I complexes by a novel translation initiation mechanism. Immunity10 (6), 681–690 (1999).
  • Mauro VP Chappell SA . A critical analysis of codon optimization in human therapeutics. Trends Mol. Med.20 (11), 604–613 (2014).
  • Litzinger DC Buiting AMJ van Rooijen N Huang L . Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim. Biophys. Acta BBA - Biomembr.1190 (1), 99–107 (1994).
  • Bachmann MF Jennings GT . Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol.10 (11), 787–796 (2010).
  • Reddy ST Rehor A Schmoekel HG Hubbell JA Swartz MA . In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control Rel.112 (1), 26–34 (2006).
  • Manolova V Flace A Bauer M Schwarz K Saudan P Bachmann MF . Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol.38 (5), 1404–1413 (2008).
  • Midoux P Pichon C . Lipid-based mRNA vaccine delivery systems. Expert Rev. Vaccines14 (2), 221–234 (2015).
  • Kenney RT Frech SA Muenz LR Villar CP Glenn GM . Dose sparing with intradermal injection of influenza vaccine. N. Engl. J. Med.351 (22), 2295–2301 (2004).
  • Mutsch M Zhou W Rhodes P et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N. Engl. J. Med.350 (9), 896–903 (2004).
  • Kreiter S Selmi A Diken M et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res.70 (22), 9031–9040 (2010).
  • Tagawa ST Lee P Snively J et al. Phase I study of intranodal delivery of a plasmid DNA vaccine for patients with stage IV melanoma. Cancer98 (1), 144–154 (2003).
  • Pardi N Tuyishime S Muramatsu H et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control Rel.217, 345–351 (2015).
  • McCullough KC Milona P Thomann-Harwood L et al. Self-amplifying replicon RNA vaccine delivery to dendritic cells by synthetic nanoparticles. Vaccines2 (4), 735–754 (2014).
  • Ulmer JB Mason PW Geall A Mandl CW . RNA-based vaccines. Vaccine30 (30), 4414–4418 (2012).
  • Pushko P Parker M Ludwig GV Davis NL Johnston RE Smith JF . Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology239 (2), 389–401 (1997).
  • Hekele A Bertholet S Archer J et al. Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect.2 (8), e52 (2013).
  • Weide B Pascolo S Scheel B et al. Direct injection of protamine-protected mRNA: results of a Phase 1/2 vaccination trial in metastatic melanoma patients. J. Immunother.32 (5), 498–507 (2009).
  • Xue HY Guo P Wen W-C Wong HL . Lipid-based nanocarriers for RNA delivery. Curr. Pharm. Des.21 (22), 3140–3147 (2015).
  • Kauffman KJ Dorkin JR Yang JH et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett.15 (11), 7300–7306 (2015).
  • MacGregor RR Boyer JD Ugen KE et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J. Infect. Dis.178 (1), 92–100 (1998).
  • Ferraro B Morrow MP Hutnick NA Shin TH Lucke CE Weiner DB . Clinical applications of DNA vaccines: current progress. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.53 (3), 296–302 (2011).
  • Weide B Garbe C Rammensee H-G Pascolo S . Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunol. Lett.115 (1), 33–42 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.